Corresponding Author

Meng-Ning Ding(mding@nju.edu.cn)


Electrochemical/electrocatalytic technology has played a central role in achieving highly efficient energy conversion and storage. To date, the in-depth electrochemical research begins to require accurate and multi-dimensional information of electrochemical interfaces, which usually relies on the application of in situ characterizations. Electrical transport spectroscopy (ETS) is a newly developed measurement strategy based on chip-platform, and provides in situ information of electrochemical interfaces from a novel perspective due to a signal origin that is fundamentally different from typical spectroscopic and electrochemical techniques. In this tutorial review, the working principle and experimental setup of ETS are described in detail with the demonstration of several model electrocatalytic materials, including metal nanoparticle/nanowires, two-dimensional layered materials, nickel based hydroxide/oxyhydroxides and dissimilatory metal-reducing bacteria. The advantages of ETS are summarized, and the future challenges and opportunities that ETS faces are also prospected.

Graphical Abstract


electrical transport spectroscopy, mirco-nano electrochemical device, in-situ characterization, electrochemical interfaces, surface adsorptions

Publication Date


Online Available Date


Revised Date


Received Date



[1] Motobayashi K, Osawa M. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces[J]. Curr. Opin. Electrochem., 2018, 8:147-155.

[2] Zhu Y P, Wang J L, Chu H, Chu Y C, Chen H M. In situ/operando studies for designing next-generation electrocatalysts[J]. ACS Energy Lett., 2020, 5(4):1281-1291.
doi: 10.1021/acsenergylett.0c00305 URL

[3] Deng Y L, Yeo B S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11):7873-7889.
doi: 10.1021/acscatal.7b02561 URL

[4] Timoshenko J, Cuenya B R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chem. Rev., 2021, 121(2):882-961.
doi: 10.1021/acs.chemrev.0c00396 URL

[5] Yang K L, Kas R, Smith W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. J. Am. Chem. Soc., 2019, 141(40):15891-15900.
doi: 10.1021/jacs.9b07000 URL

[6] Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22):13234-13278.
pmid: 27736057

[7] Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics[J]. Nat. Electron., 2019, 2(6):221-229.
doi: 10.1038/s41928-019-0264-8 URL

[8] Meddings N, Heinrich M, Overney F, Lee J S, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gabers M, Park J. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review[J]. J. Power Sources, 2020, 480:228742.
doi: 10.1016/j.jpowsour.2020.228742 URL

[9] Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies[J]. Curr. Opin. Electro-chem., 2017, 1(1):53-58.

[10] Ding M N, He Q Y, Wang G M, Cheng H C, Huang Y, Duan X F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces[J]. Nat. Commun., 2015, 6:7867.
doi: 10.1038/ncomms8867 URL

[11] Ding M N, Liu Y, Wang G M, Zhan Z P, Yin A X, He Q Y, Huang Y, Duan X F. Highly sensitive chemical detection with tunable sensitivity and selectivity from ultrathin platinum nanowires[J]. Small, 2017, 13(5):1602969.
doi: 10.1002/smll.201602969 URL

[12] Yang F, Donavan K C, Kung S C, Penner R M. The surface scattering-based detection of hydrogen in air using a platinum nanowire[J]. Nano Lett., 2012, 12(6):2924-2930.
doi: 10.1021/nl300602m pmid: 22524464

[13] Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6):499-537.
doi: 10.1080/00018730110102187 URL

[14] Climent V, Feliu J M. Thirty years of platinum single crystal electrochemistry[J]. J. Solid State Electrochem., 2011, 15(7-8):1297-1315.
doi: 10.1007/s10008-011-1372-1 URL

[15] Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8:14580.
doi: 10.1038/ncomms14580 URL

[16] Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8):1765-1772.
doi: 10.1021/cs3003098 URL

[17] Fukuzumi S, Yamada Y, Karlin K D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim. Acta, 2012, 82:493-511.
doi: 10.1016/j.electacta.2012.03.132 URL

[18] Chang X, Batchelor-McAuley C, Compton R G. Hydrogen peroxide reduction on single platinum nanoparticles[J]. Chem. Sci., 2020, 11(17):4416-4421.
doi: 10.1039/d0sc00379d pmid: 34122898

[19] Ali A, Shen P K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction[J]. J. Mater. Chem. A, 2019, 7(39):22189-22217.
doi: 10.1039/C9TA06088J URL

[20] Ferre-Vilaplana A, Perales-Rondón J V, Feliu J M, Herrero E. Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) electrodes[J]. ACS Catal., 2014, 5(2):645-654.
doi: 10.1021/cs501729j URL

[21] Banerjee S, Zhang Z Q, Hall A S, Thoi V S. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catal., 2020, 10(17):9907-9914.
doi: 10.1021/acscatal.0c02387 URL

[22] Cho M, Song J T, Back S, Jung Y, Oh J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS Catal., 2018, 8(2):1178-1185.
doi: 10.1021/acscatal.7b03449 URL

[23] Huang J E, Li F W, Ozden A, Rasouli A S, de Arquer F P G, Liu S J, Zhang S Z, Luo M C, Wang X, Lum Y W, Xu Y, Bertens K, Miao R K, Dinh C T, Sinton D, Sargent E H. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546):1074-1078.
doi: 10.1126/science.abg6582 URL

[24] Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix[J]. Nat. Catal., 2020, 3(8):656-663.
doi: 10.1038/s41929-020-0482-5 URL

[25] Ding M, Zhong G Y, Zhao Z P, Huang Z H, Li M F, Shiu H Y, Liu Y, Shakir I, Huang Y, Duan X F. On-chip in situ monitoring of competitive interfacial anionic chemi-sorption as a descriptor for oxygen reduction kinetics[J]. ACS Cent. Sci., 2018, 4(5):590-599.
doi: 10.1021/acscentsci.8b00082 URL

[26] Mu Z Y, Yang M, He W, Pan Y H, Zhang P K, Li X F, Wu X J, Ding M N. On-chip electrical transport investigation of metal nanoparticles: Characteristic acidic and alkaline adsorptions revealed on Pt and Au surface[J]. J. Phys. Chem. Lett., 2020, 11(14):5798-5806.
doi: 10.1021/acs.jpclett.0c01282 URL

[27] Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19):10489-10494.
doi: 10.1021/acs.jpcc.8b02685 URL

[28] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Van der Waals heterostructures and devices[J]. Nat. Rev. Mater., 2016, 1(9):16042.
doi: 10.1038/natrevmats.2016.42 URL

[29] Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748):323-333.
doi: 10.1038/s41586-019-1013-x URL

[30] He Q Y, Lin Z Y, Ding M N, Yin A X, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X F. In situ probing molecular intercalation in two-dimensional layered semiconductors[J]. Nano Lett., 2019, 19(10), 6819-6826.
doi: 10.1021/acs.nanolett.9b01898 URL

[31] Zhang J S, Yang A K, Wu X, van de Groep J, Tang P Z, Liu S R, Liu B F, Shi F F, Wan J Y, Li Q T, Sun Y M, Lu Z Y, Zheng X L, Zhou G M, Wu C L, Zhang S C, Brongersma M L, Li J, Cui Y. Reversible and selective ion intercalation through the top surface of few-layer MoS2[J]. Nat. Commun., 2018, 9:5289.
doi: 10.1038/s41467-018-07710-z URL

[32] He W, Zang H, Cai S H, Mu Z Y, Liu C, Ding M N, Wang P, Wang X R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules[J]. Nano Res., 2020, 13(11):2917-2924.
doi: 10.1007/s12274-020-2948-9 URL

[33] Yu X Y, Feng Y, Guan B Y, Lou X W, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction[J]. Energy Environ. Sci., 2016, 9(4):1246-1250.
doi: 10.1039/C6EE00100A URL

[34] Tian B L, Shin H, Liu S T, Fei M C, Mu Z Y, Liu C, Pan Y H, Sun Y M, Goddard W A, Ding M N. Double exchange induced in situ conductivity in nickel based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution[J]. Angew.Chem. Int. Ed., 2021, 60(30):16448-16456.

[35] Bediako D K, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra V K, Nocera D G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2012, 134(15):6801-6809.
doi: 10.1021/ja301018q URL

[36] de Gennes P G. Effects of double exchange in magnetic crystals[J]. Phys. Rev., 1960, 118(1):141-154.
doi: 10.1103/PhysRev.118.141 URL

[37] Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem. Rev., 2019, 119(12):7610-7672.
doi: 10.1021/acs.chemrev.8b00705 URL

[38] Cao C S, Ma D D, Gu J F, Xie X Y, Zeng G, Li X F, Han S G, Zhu Q L, Wu X T, Xu Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem. Int. Ed., 2020, 59(35):15014-15020.
doi: 10.1002/anie.202005577 URL

[39] Yang H, Han N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Adv. Energy Mater., 2018, 8(35):1801536.
doi: 10.1002/aenm.201801536 URL

[40] Zhou Y, Liu S T, Gu Y M, Wen G H, Ma J, Zuo J L, Ding M N. In(III) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction[J]. J. Am. Chem. Soc., 2021, 143(35):14071-14076.
doi: 10.1021/jacs.1c06797 URL

[41] Liu S T, Wang C, Wu J H, Tian B L, Sun Y M, Lv Y, Mu Z Y, Sun Y X, Li X S, Wang F Y, Wang Y Q, Tang L Y, Wang P, Li Y F, Ding M N. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state[J]. ACS Catal., 2021, 11(20):12476-12484.
doi: 10.1021/acscatal.1c02495 URL

[42] Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11):2974-2993.
doi: 10.1016/j.chempr.2020.07.022 URL

[43] Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J. Am. Chem. Soc., 2016, 138(1):36-39.
doi: 10.1021/jacs.5b10525 URL

[44] Gerischer H. Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis[J]. Surf. Sci., 1969, 18(1):97-122.
doi: 10.1016/0039-6028(69)90269-6 URL

[45] Bisri S Z, Shimizu S, Nakano M, Iwasa Y. Endeavor of iontronics: From fundamentals to applications of ion-con-trolled electronics[J]. Adv. Mater., 2017, 29(25):1607054.
doi: 10.1002/adma.201607054 URL

[46] Marcus R A. On the theory of oxidation-reduction reactions involving electron transfer. I[J]. J. Chem. Phys., 2004, 26(4):867-871.
doi: 10.1063/1.1743423 URL

[47] He Y M, He Q Y, Wang L Q, Zhu C, Golani P, Handoko A D, Yu X C, Gao C T, Ding M N, Wang X W, Liu F C, Zeng Q S, Yu P, Guo S S, Yakobson B I, Wang L, Seh Z W, Zhang Z H, Wu M H, Wang Q J, Zhang H, Liu Z. Self-gating in semiconductor electrocatalysis[J]. Nat. Mater., 2019, 18(10):1098-1104.
doi: 10.1038/s41563-019-0426-0 URL

[48] Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation[J]. Annu. Rev. Microbiol., 1994, 48:311-343.
pmid: 7826009

[49] Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L, Rodionov D A, Rodrigues J L M, Saffarini D A, Serres M H, Spormann A M, Zhulin I B, Tiedje J M. Towards environmental systems biology of Shewanella[J]. Nat. Rev. Microbiol., 2008, 6(8):592-603.
doi: 10.1038/nrmicro1947 pmid: 18604222

[50] Rabaey K, Rozendal R A. Microbial electrosynjournal-revisiting the electrical route for microbial production[J]. Nat. Rev. Microbiol., 2010, 8(10):706-716.
doi: 10.1038/nrmicro2422 URL

[51] Ding M N, Shiu H Y, Li S L, Lee C K, Wang G M, Wu H, Weiss N O, Young T D, Weiss P S, Wong G C L, Nealson K H, Huang Y, Duan X F. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter[J]. ACS Nano, 2016, 10(11):9919-9926.
doi: 10.1021/acsnano.6b03655 URL

[52] Gao D F, Soholten F, Cuenya B R. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catal., 2017, 7(8):5112-5120.
doi: 10.1021/acscatal.7b01416 URL

[53] Wahab O J, Kang M, Unwi P R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry[J]. Curr. Opin. Electrochem., 2020, 22:120-128.

[54] Zhang J, Wu J J, Guo H, Chen W B, Yuan J T, Martinez U, Gupta G, Mohite A, Ajayan P M, Lou J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2[J]. Adv. Mater., 2017, 29(42):1701955.
doi: 10.1002/adma.201701955 URL

[55] Inkpen M S, Liu Z F, Li H X, Campos L M, Neaton J B, Venkataraman L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers[J]. Nat. Chem., 2019, 11(4):351-358.
doi: 10.1038/s41557-019-0216-y URL

[56] Gongding J J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958.
doi: 10.1002/anie.201606459 URL

[57] Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett., 2015, 15(5):3634-3639.
doi: 10.1021/acs.nanolett.5b01254 URL

[58] Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. Microbial electrosynjournal: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. 2010, mBio, 1(2):e00103-10.

[59] Tian B Z, Lieber C M. Nanowired bioelectric interfaces[J]. Chem. Rev., 2019, 119(15):9136-9152.
doi: 10.1021/acs.chemrev.8b00795 URL

[60] Patolsky F, Zheng G F, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nat. Protoc., 2006, 1(4):1711-1724.
doi: 10.1038/nprot.2006.227 URL

[61] Tian B Z, Liu J, Dvir T, Jin L H, Tsui J H, Qing Q, Suo Z G, Langer R, Kohane D S, Lieber C M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues[J]. Nat. Mater., 2012, 11(11):986-994.
doi: 10.1038/nmat3404 URL

[62] Patolsky F, Timko B P, Yu G H, Fang Y, Greytak A B, Zheng G F, Lieber C M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006, 313(5790):1100-1104.
doi: 10.1126/science.1128640 URL

[63] Li T X, Liang Y Q, Li J H, Yu Y, Xiao M M, Ni W, Zhang Z Y, Zhang G J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21[J]. Anal. Chem., 2021, 93(46):15501-15507.
doi: 10.1021/acs.analchem.1c03573 URL

[64] Tian B Z, Cohen-Karni T, Qing Q, Duan X J, Xie P, Lieber C M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes[J]. Science, 2010, 329(5993):830-834.
doi: 10.1126/science.1192033 URL

[65] Jenkins E P W, Finch A, Gerigk M, Triantis I F, Watts C, Malliaras G G. Electrotherapies for glioblastoma[J]. Adv. Sci., 2021, 8(18):2100978.
doi: 10.1002/advs.202100978 URL

[66] Yu R J, Ying Y L, Gao R, Long Y T. Confined nanopipette sensing: From single molecules, single nanoparticles, to single cells[J]. Angew. Chem. Int. Ed., 2019, 58(12):3706-3714.
doi: 10.1002/anie.201803229 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.