Corresponding Author

Fan-Peng Kong(fpkong@hit.edu.cn);
Jia-Jun Wang(jiajunhit@hit.edu.cn)


The rapid development of electric vehicles urgently requires high-energy-density batteries. Recently, metal-air batteries have attracted much attention in industry and academia for their ultra-high theoretical energy densities. However, the practical application of metal-air batteries is severely impeded by multiple drawbacks, including severe side reactions, low energy efficiency, and limited cycle life. Understanding the reaction mechanism of the cell and further developing effective strategies are beneficial for the practical application of metal-air batteries. In the past decade, advanced characterization techniques have accelerated the development of metal-air batteries. In particular, synchrotron radiation-based characterization techniques have been widely applied to the mechanistic study of metal-air batteries due to their non-destructive detection capability and high resolution. In this review, various synchrotron radiation-based characterization techniques are systematically summarized to understand the local structure and chemistry of metal-air batteries, with a special focus on how these advanced techniques can help understand the essence of degradation mechanism and optimization strategies. This progress report aims to highlight the crucial role of synchrotron radiation characterization for mechanism understanding of metal-air batteries.

Graphical Abstract


high energy density, metal-air battery, synchrotron-based techniques, battery degradation

Publication Date


Online Available Date


Revised Date


Received Date



[1] Abraham D. Advances in lithium-ion battery research and technology[J]. JOM-J. Miner. Met. Mater. Soc., 2002, 54(3):18-19.

[2] Thackeray M M, Thomas J O, Whittingham M S. Science and applications of mixed conductors for lithium batteries[J]. MRS Bull., 2000, 25(3):39-46.

[3] Yang Y F, Yang J L, Pan F, Cui Y. From intercalation to alloying chemistry: Structural design of silicon anodes for the next generation of lithium-ion batteries[J]. Chinese J. Struct. Chem., 2020, 39(1):16-19.

[4] Shao Y Q, Jiang Z S, Zhang Q Q, Guan J Q. Progress in nonmetal-doped graphene electrocatalysts for the oxygen reduction reaction[J]. ChemSusChem, 2019, 12(10):2133-2146.
doi: 10.1002/cssc.201900060 URL

[5] Dabill D W, Walsh P T. The effect of hyperbaric pressure on catalytic and electrochemical gas sensors[J]. Sens. Actuators B Chem., 1996, 30(2):111-119.
doi: 10.1016/0925-4005(95)01757-M URL

[6] Cao R G, Lee J S, Liu M L, Cho J. Recent progress in non-precious catalysts for metal-air batteries[J]. Adv. Energy Mater., 2012, 2(7):816-829.
doi: 10.1002/aenm.201200013 URL

[7] Shimonishi Y, Zhang T, Johnson P, Imanishi N, Hirano A, Takeda Y, Yamamoto O, Sammes N. A study on lithium/air secondary batteries-Stability of NASICON-type glass ceramics in acid solutions[J]. J. Power Sources, 2010, 195(18):6187-6191.
doi: 10.1016/j.jpowsour.2009.11.023 URL

[8] Yabuuchi N, Kubota K, Dahbi M, Komaba S. Research development on sodium-ion batteries[J]. Chem. Rev., 2014, 114(23):11636-11682.
doi: 10.1021/cr500192f pmid: 25390643

[9] Yin W W, Fu Z W. The potential of Na-air batteries[J]. ChemCatChem, 2017, 9(9):1545-1553.
doi: 10.1002/cctc.201600646 URL

[10] Otaegui L, Rodriguez-Martinez L M, Wang L, Laresgoiti A, Tsukamoto H, Han M H, Tsai C L, Laresgoiti I, Lopez C M, Rojo T. Performance and stability of a liquid anode high-temperature metal-air battery[J]. J. Power Sources, 2014, 247:749-755.
doi: 10.1016/j.jpowsour.2013.09.029 URL

[11] Crowther O, Keeny D, Moureau D M, Meyer B, Salomon M, Hendrickson M. Electrolyte optimization for the primary lithium metal air battery using an oxygen selective membrane[J]. J. Power Sources, 2012, 202:347-351.
doi: 10.1016/j.jpowsour.2011.11.024 URL

[12] Jung K N, Hwang S M, Park M S, Kim K J, Kim J G, Dou S X, Kim J H, Lee J W. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries[J]. Sci. Rep., 2015, 5:7665.
doi: 10.1038/srep07665 URL

[13] Bai J J, Lu H M, Cao Y, Li X D, Wang J R. A novel ionic liquid polymer electrolyte for quasi-solid state lithium air batteries[J]. RSC Adv., 2017, 7(49):30603-30609.
doi: 10.1039/C7RA05035F URL

[14] Liu J T, Xie Y, Gao Q, Cao F H, Qin L, Wu Z Y, Zhang W, Li H, Zhang C L. 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis[J]. Eur. J. Inorg. Chem., 2020, 2020(6):581-589.
doi: 10.1002/ejic.201901244 URL

[15] Zhao N, Li C L, Guo X X. Long-life Na-O2 batteries with high energy efficiency enabled by electrochemically splitting NaO2 at a low overpotential[J]. Phys. Chem. Chem. Phys., 2014, 16(29):15646-15652.
doi: 10.1039/c4cp01961j URL

[16] Wang L G, Dai A V, Xu W Q, Lee S, Cha W, Harder R, Liu T C, Ren Y, Yin G P, Zuo P J, Wang J, Lu J, Wang J J. Structural distortion induced by manganese activation in a lithium-rich layered cathode[J]. J. Am. Chem. Soc., 2020, 142(35):14966-14973.
doi: 10.1021/jacs.0c05498 URL

[17] Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, Wang J J. Surface regulation enables high stability of single-cry-stal lithium-ion cathodes at high voltage[J]. Nat. Commun., 2020, 11(1):3035.
doi: 10.1038/s41467-020-15541-0 URL

[18] Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Ed., 2019, 58(51):18647-18653.
doi: 10.1002/anie.201910993 URL

[19] Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1):5700.
doi: 10.1038/s41467-020-19528-9 URL

[20] Wang J J, Chen-Wiegart Y C K, Eng C, Shen Q, Wang J. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles[J]. Nat. Commun., 2016, 7:12372.
doi: 10.1038/ncomms12372 URL

[21] Jacobsen C, Kirz J. X-ray microscopy with synchrotron radiation[J]. Nat. Struct. Biol., 1998, 5:650-653.
doi: 10.1038/1341 URL

[22] Bodo G, Ghisellini G, Trussoni E. Diamagnetic effects in synchrotron sources[J]. Mon. Not. R. Astron. Soc., 1992, 255(4):694-700.
doi: 10.1093/mnras/255.4.694 URL

[23] Herklotz M, Weiss J, Ahrens E, Yavuz M, Mereacre L, Kiziltas-Yavuz N, Drager C, Ehrenberg H, Eckert J, Fauth F, Giebeler L, Knapp M. A novel high-throughput setup for in situ powder diffraction on coin cell batteries[J]. J. Appl. Crystallogr., 2016, 49:340-345.
doi: 10.1107/S1600576715022165 URL

[24] Wang J J, Chen-Wiegart Y C K, Wang J. In situ three-di-mensional synchrotron X-ray nanotomography of the (De)lithiation processes in tin anodes[J]. Angew. Chem. Int. Ed., 2014, 53(17):4460-4464.
doi: 10.1002/anie.201310402 URL

[25] Wang J J, Chen-Wiegart Y C K, Wang J. In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy[J]. Nat. Commun., 2014, 5:4570.
doi: 10.1038/ncomms5570 URL

[26] Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6):2000721.
doi: 10.1002/adma.202000721 URL

[27] Lou S F, Yu Z J, Liu Q S, Wang H, Chen M, Wang J J. Multi-scale imaging of solid-state battery interfaces: From atomic scale to macroscopic scale[J]. Chem, 2020, 6(9):2199-2218.
doi: 10.1016/j.chempr.2020.06.030 URL

[28] Wang L G, Wang J J, Zuo P J. Probing battery electrochemistry with in operando synchrotron X-ray imaging techniques[J]. Small Methods, 2018, 2(8):1700293.
doi: 10.1002/smtd.201700293 URL

[29] Cao C T, Toney M F, Sham S K, Harder R, Shearing P R, Xiao X H, Wang J J. Emerging X-ray imaging technologies for energy materials[J]. Mater. Today, 2020, 34:132-147.
doi: 10.1016/j.mattod.2019.08.011 URL

[30] Rahimabadi P S, Khodaei M, Koswattage K R. Review on applications of synchrotron-based X-ray techniques in materials characterization[J]. X-Ray Spectrom., 2020, 49(3):348-373.
doi: 10.1002/xrs.3141 URL

[31] Paterson A, Stevens R. Phase analysis of sintered yttria-zirconia ceramics by X-ray diffraction[J]. J. Mater. Res., 1986, 1(2):295-299.
doi: 10.1557/JMR.1986.0295 URL

[32] Scardi P, Leoni M, Cappuccio G, Sessa V, Terranova M L. Residual stress in polycrystalline diamond Ti6Al4Vsystems[J]. Diamond Relat. Mater., 1997, 6(5-7):807-811.
doi: 10.1016/S0925-9635(96)00605-X URL

[33] Vink T J, Somers M A J, Daams J L C, Dirks A G. Stress, strain, and microstructure of sputter-deposited Mo thin-films[J]. J. Appl. Phys., 1991, 70(8):4301-4308.
doi: 10.1063/1.349108 URL

[34] Hirayama M, Ido H, Kim K, Cho W, Tamura K, Mizuki J, Kanno R. Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction[J]. J. Am. Chem. Soc., 2010, 132(43):15268-15276.
doi: 10.1021/ja105389t pmid: 20939527

[35] Wu C J, Hua W B, Zhang Z, Zhong B H, Yang Z G, Feng G L, Xiang W, Wu Z G, Guo X D. Design and synjournal of layered Na2Ti3O7 and tunnel Na2Ti6O13 hybrid structures with enhanced electrochemical behavior for sodium-ion batteries[J]. Adv. Sci. Lett., 2018, 5(9):1800519.

[36] Gonzalo E, Zarrabeitia M, Drewett N E, del Amo J M L, Rojo T. Sodium manganese-rich layered oxides: potential candidates as positive electrode for sodium-ion batteries[J]. Energy Stor. Mater., 2021, 34:682-707.

[37] Gu X D, Reinspach J, Worfolk B J, Diao Y, Zhou Y, Yan H P, Gu K V, Mannsfeld S, Toney M F, Bao Z N. Compact roll-to-roll coater for in situ X-ray diffraction characterization of organic electronics printing[J]. ACS Appl. Mater. Interfaces, 2016, 8(3):1687-1694.
doi: 10.1021/acsami.5b09174 URL

[38] Shui J L, Okasinski J S, Liu D J. Reversibility of anodic lithium in rechargeable lithium-oxygen batteries[J]. Nat. Commun., 2013, 4:2255.
doi: 10.1038/ncomms3255 URL

[39] Lupina G, Schroeder T, Dabrowski J, Wenger C, Mane A, Lippert G, Mussig H J, Hoffmann P, Schmeisser D. Praseodymium silicate layers with atomically abrupt interface on Si(100)[J]. Appl. Phys. Lett., 2005, 87(9):092901
doi: 10.1063/1.2032596 URL

[40] King G C, Yencha A J, Lopes M C A. Threshold photoelectron spectroscopy using synchrotron radiation[J]. Application of Accelerators in Research and Industry, 2001, 576:703-706.

[41] Sun Z H, Liu Q H, Yao T, Yan W S, Wei S Q. X-ray absorption fine structure spectroscopy in nanomaterials[J]. Sci. China. Mater., 2015, 58(4):313-341.
doi: 10.1007/s40843-015-0043-4 URL

[42] Fujikawa T, Rehr J J, Wada Y, Nagamatsu S. Approximate spherical wave Debye-Waller factors in EXAFS and XANES spectra[J]. J. Phys. Soc. Jpn., 1999, 68(4):1259-1268.
doi: 10.1143/JPSJ.68.1259 URL

[43] Fornasini P, Grisenti R, Dapiaggi M, Agostini G. Local structural distortions in SnTe investigated by EXAFS[J]. J. Phys. Condens. Matter, 2021, 33(29):295404.
doi: 10.1088/1361-648X/ac0082 URL

[44] Husain H, Hariyanto B, Sulthonul M, Thamatkeng P, Pratapa S. Local structure examination of mineral-derived Fe2O3 powder by Fe K-edge EXAFS and XANES[C]//Proceedings of 5th International Conference on Advanced Materials Sciences and Technology. Makassar City, Indonesia, September 19-20, 2017.

[45] Naftel S J, Coulthard I, Hu Y, Sham T K, Zinke-Allmang M. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films[C]//Proceedings of Applications of Synchrotron Radiation Techniques to Materials Science IV. San Francisco City, United States of America, April 13-17, 1998.

[46] Yonemura T, Iihara J, Uemura S, Yamaguchi K, Niibe M. Development of the Surface-sensitive Soft X-ray Absorption Fine Structure Measurement Technique for the Bulk Insulator[C]//Proceedings of 12th International Conference on Synchrotron Radiation Instrumentation. New York City, United States of America, July 06-10, 2015.

[47] Ohkubo M, Shiki S, Ukibe M, Matsubayashi N, Kitajima Y, Nagamachi S. X-ray absorption near edge spectroscopy with a superconducting detector for nitrogen dopants in SiC[J]. Sci. Rep., 2012, 2:831.
doi: 10.1038/srep00831 pmid: 23152937

[48] Hoffman C L, Nicholas S L, Ohnemus D C, Fitzsimmons J N, Sherrell R M, German C R, Heller M I, Lee J M, Lam P J, Toner B M. Near-field iron and carbon chemistry of non-buoyant hydrothermal plume particles, Southern East Pacific Rise 15 degrees S[J]. Mar. Chem., 2018, 201:183-197.
doi: 10.1016/j.marchem.2018.01.011 URL

[49] Li L S, Chen-Wiegart Y C K, Wang J J, Gao P, Ding Q, Yu Y S, Wang F, Cabana J, Wang J, Jin S. Visualization of electrochemically driven solid-state phase transformations using operando hard X-ray spectro-imaging[J]. Nat. Commun., 2015, 6:6883.
doi: 10.1038/ncomms7883 URL

[50] Tsai P C, Wen B H, Wolfman M, Choe M J, Pan M S, Su L, Thornton K, Cabana J, Chiang Y M. Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries[J]. Energy Environ. Sci., 2018, 11(4):860-871.
doi: 10.1039/C8EE00001H URL

[51] Elango R, Demortiere A, De Andrade V, Morcrette M, Seznec V. Thick binder-free electrodes for Li-ion battery fabricated using templating approach and spark plasma sintering reveals high areal capacity[J]. Adv. Energy Ma-ter., 2018, 8(15):1703031.

[52] Zhao C H, Wada T, De Andrade V, Gursoy D, Kato H, Chen-Wiegart Y C K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography[J]. Nano Energy, 2018, 52:381-390.
doi: 10.1016/j.nanoen.2018.08.009 URL

[53] Sun L, Liu D X. Chemical activation of commercial CNTs with simultaneous surface deposition of manganese oxide nano flakes for the creation of CNTs-graphene supported oxygen reduction ternary composite catalysts applied in air fuel cell[J]. Appl. Surf. Sci., 2018, 447:518-527.
doi: 10.1016/j.apsusc.2018.04.025 URL

[54] Wang Y Q, Yu B Y, Liu K, Yang X T, Liu M, Chan T S, Qiu X Q, Li J, Li W Z. Co single-atoms on ultrathin N-doped porous carbon via a biomass complexation strategy for high performance metal-air batteries[J]. J. Mater. Chem. A, 2020, 8(4):2131-2139.
doi: 10.1039/C9TA12171D URL

[55] Kim T, Ohata Y, Kim J, Rhee C K, Miyawaki J, Yoon S H. Fe nanoparticle entrained in tubular carbon nanofiber as an effective electrode material for metal-air batteries: A fundamental reason[J]. Carbon, 2014, 80:698-707.
doi: 10.1016/j.carbon.2014.09.014 URL

[56] de Vasconcelos G J Q, Miqueles E X, Costa G S R. Responsive alignment for X-ray tomography beamlines[J]. J. Synchrotron Radiat., 2018, 25:1774-1779.
doi: 10.1107/S1600577518012201 pmid: 30407189

[57] Morrell A P, Mosselmans J F W, Geraki K, Ignatyev K, Castillo-Michel H, Monksfield P, Warfield A T, Febbraio M, Roberts H M, Addison O, Martin R A. Implications of X-ray beam profiles on qualitative and quantitative synchrotron micro-focus X-ray fluorescence microscopy[J]. J. Synchrotron Radiat., 2018, 25:1719-1726.
doi: 10.1107/S160057751801247X URL

[58] Sun F, Gao R, Zhou D, Osenberg M, Dong K, Kardjilov N, Hilger A, Markotter H, Bieker P M, Liu X F, Manke I. Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography[J]. ACS Energy Lett., 2019, 4(1):306-316.
doi: 10.1021/acsenergylett.8b02242

[59] Tan P, Jiang H R, Zhu X B, An L, Jung C Y, Wu M C, Shi L, Shyy W, Zhao T S. Advances and challenges in lithium-air batteries[J]. Appl. Energy, 2017, 204:780-806.
doi: 10.1016/j.apenergy.2017.07.054 URL

[60] Wang Y, Lu Y C. Nonaqueous lithium-oxygen batteries: Reaction mechanism and critical open questions[J]. Energy Stor. Mater., 2020, 28:235-246.

[61] Yamaki J I, Tobishima S I, Sakurai Y, Saito K I, Hayashi K. Safety evaluation of rechargeable cells with lithium metal anodes and amorphous V2O5 cathodes[J]. J. Appl. Electrochem., 1998, 28(2):135-140.
doi: 10.1023/A:1003270406759 URL

[62] Takehara Z. Future prospects of the lithium metal anode[J]. J. Power Sources, 1997, 68(1):82-86.
doi: 10.1016/S0378-7753(96)02546-3 URL

[63] Wang X F, Feng Z J, Huang J T, Deng W, Li X B, Zhang H S, Wen Z H. Graphene-decorated carbon-coated LiFePO4 nanospheres as a high-performance cathode material for lithium-ion batteries[J]. Carbon, 2018, 127:149-157.
doi: 10.1016/j.carbon.2017.10.101 URL

[64] Sun F, Zielke L, Markoetter H, Hilger A, Zhou D, Moroni R, Zengerle R, Thiele S, Banhart J, Manke I. Morphological evolution of electrochemically plated/stripped lithium microstructures investigated by synchrotron X-ray phase contrast tomography[J]. ACS Nano, 2016, 10(8):7990-7997.
doi: 10.1021/acsnano.6b03939 pmid: 27463258

[65] Younesi R, Hahlin M, Edstrom K. Surface characterization of the carbon cathode and the lithium anode of Li-O2 batteries using LiClO4 or LiBOB salts[J]. ACS Appl. Mater. Interfaces, 2013, 5(4):1333-1341.
doi: 10.1021/am3026129 URL

[66] Park J B, Lee S H, Jung H G, Aurbach D, Sun Y K. Redox mediators for Li-O2 batteries: Status and perspectives[J]. Adv. Mater., 2018, 30(1):1704162.
doi: 10.1002/adma.201704162 URL

[67] Zhang T, Liao K M, He P, Zhou H S. A self-defense redox mediator for efficient lithium-O2 batteries[J]. Energy Environ. Sci., 2016, 9(3):1024-1030.
doi: 10.1039/C5EE02803E URL

[68] Cremasco L F, Anchieta C G, Nepel T C M, Miranda A N, Sousa B P, Rodella C B, Filho R M, Doubek G. Operando synchrotron XRD of bromide mediated Li-O2 battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(11):13123-13131.
doi: 10.1021/acsami.0c21791 URL

[69] Landa-Medrano I, Olivares-Marin M, Bergner B, Pinedo R, Sorrentino A, Pereiro E, de Larramendi I R, Janek J, Rojo T, Tonti D. Potassium salts as electrolyte additives in lithium-oxygen batteries[J]. J. Phys. Chem. C, 2017, 121(7):3822-3829.
doi: 10.1021/acs.jpcc.7b00355 URL

[70] Olivares-Marin M, Sorrentino A, Pereiro E, Tonti D. Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy[J]. J. Power Sources, 2017, 359:234-241.
doi: 10.1016/j.jpowsour.2017.05.039 URL

[71] Yao K P C, Risch M, Sayed S Y, Lee Y L, Harding J R, Grimaud A, Pour N, Xu Z C, Zhou J G, Mansour A, Barde F, Shao-Horn Y. Solid-state activation of Li2O2 oxidation kinetics and implications for Li-O2 batteries[J]. Energy Environ. Sci., 2015, 8(8):2417-2426.
doi: 10.1039/C5EE00967G URL

[72] Song M, Zhu D, Zhang L, Wang X F, Huang L H, Shi Q W, Mi R, Liu H, Mei J, Lau L W M, Chen Y G. Temperature dependence of charging characteristic of C-free Li2O2 cathode in Li-O2 battery[J]. J. Solid State Electro-chem., 2013, 17(7):2061-2069.

[73] Xu W, Viswanathan V V, Wang D Y, Towne S A, Xiao J, Nie Z M, Hu D H, Zhang J G. Investigation on the charging process of Li2O2-based air electrodes in Li-O2 batteries with organic carbonate electrolytes[J]. J. Power Sour-ces, 2011, 196(8):3894-3899.

[74] Wang H, Kou R H, Jin Q, Liu Y Z, Yin F X, Sun C J, Wang L, Ma Z Y, Ren Y, Liu N, Chen B H. Boosting the oxygen reduction performance via tuning the synergy between metal core and oxide shell of metal-organic frameworks-derived Co@CoOx[J]. Chemelectrochem, 2020, 7(7):1590-1597.
doi: 10.1002/celc.202000038 URL

[75] Gao R, Zhou D, Ning D, Zhang W J, Huang L, Sun F, Schuck G, Schumacher G, Hu Z B, Liu X F. Probing the self-boosting catalysis of LiCoO2 in Li-O2 battery with multiple in situ/operando techniques[J]. Adv. Funct. Mater., 2020, 30(28):2002223.
doi: 10.1002/adfm.202002223 URL

[76] Su Z L, De Andrade V, Cretu S, Yin Y H, Wojcik M J, Franco A A, Demortiere A. X-ray nanocomputed tomography in zernike phase contrast for studying 3D morphology of Li-O2 battery electrode[J]. ACS Appl. Energy Mater., 2020, 3(5):4093-4102.
doi: 10.1021/acsaem.9b02236 URL

[77] Zhao C T, Liang J W, Li X N, Holmes N, Wang C H, Wang J, Zhao F P, Li S F, Sun Q, Yang X F, Liang J N, Lin X T, Li W H, Li R Y, Zhao S Q, Huang H, Zhang L, Lu S G, Sun X L. Halide-based solid-state electrolyte as an interfacial modifier for high performance solid-state Li-O2 batteries[J]. Nano Energy, 2020, 75:105036.
doi: 10.1016/j.nanoen.2020.105036 URL

[78] Olivares-Marin M, Sorrentino A, Lee R C, Pereiro E, Wu N L, Tonti D. Spatial distributions of discharged products of lithium-oxygen batteries revealed by synchrotron X-ray transmission microscopy[J]. Nano Lett., 2015, 15(10):6932-6938.
doi: 10.1021/acs.nanolett.5b02862 pmid: 26339872

[79] Younesi R, Urbonaite S, Edstrom K, Hahlin M. The cathode surface composition of a cycled Li-O2 battery: A photoelectron spectroscopy study[J]. J. Phys. Chem. C, 2012, 116(39):20673-20680.
doi: 10.1021/jp302168h URL

[80] Sun B, Pompe C, Dongmo S, Zhang J Q, Kretschmer K, Schroder D, Janek J, Wang G X. Challenges for developing rechargeable room-temperature sodium oxygen batteries[J]. Adv. Mater. Technol., 2018, 3(9):1800110.
doi: 10.1002/admt.201800110 URL

[81] Hartmann P, Bender C L, Vracar M, Durr A K, Garsuch A, Janek J, Adelhelm P. A rechargeable room-temperature sodium superoxide (NaO2) battery[J]. Nat. Mater., 2013, 12(3):228-232.
doi: 10.1038/nmat3486 pmid: 23202372

[82] Mekonnen Y S, Christensen R, Garcia-Lastra J M, Vegge T. Thermodynamic and kinetic limitations for peroxide and superoxide formation in Na-O2 batteries[J]. J. Phys. Chem. Lett., 2018, 9(15):4413-4419.
doi: 10.1021/acs.jpclett.8b01790 URL

[83] Kim J, Lim H D, Gwon H, Kang K. Sodium-oxygen batteries with alkyl-carbonate and ether based electrolytes[J]. Phys. Chem. Chem. Phys., 2013, 15(10):3623-3629.
doi: 10.1039/c3cp43225d URL

[84] Zhao S, Wang C C, Du D F, Li L, Chou S L, Li F J, Chen J. Bifunctional effects of cation additive on Na-O2 batteries[J]. Angew. Chem. Int. Ed., 2021, 60(6):3205-3211.
doi: 10.1002/anie.202012787 URL

[85] Black R, Shyamsunder A, Adeli P, Kundu D, Murphy G K, Nazar L F. The nature and impact of side reactions in glyme-based sodium-oxygen batteries[J]. ChemSusChem, 2016, 9(14):1795-1803.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.