Corresponding Author

De-Yin Wu(dywu@xmu.edu.cn)


Electrochemical reactions on nanostructured noble electrodes have received much attention, however, the reaction mechanism and reaction kinetics are still difficult to be studied. Probe molecule can give an insight to the investigation of electrochemical reactions on noble electrodes with nanostructures. In this paper, the electrochemical process of p-aminothiophenol (PATP) adsorbed on the gold electrode was studied by electrochemical cyclic voltammetry and surface-enhanced Raman spectroscopy (SERS). Here, we used one-step sodium citrate reduction method (Frens method) to synthesize gold nanoparticles, which are used to construct the nanostructured gold electrode. The Raman electrolytic cell used was based on the traditional three-electrode electrolytic cell. The gold electrode was used as the working electrode (WE), the saturated calomel electrode (SCE) as the reference electrode (RE), and the platinum wire (Pt) as the counter electrode (CE). After the careful pretreatment of the gold electrode surface, the cell was assembled and placed on the platform of the XploRa instrument to get started. With the assistance of potentiostat, the SERS spectra at different potentials were acquired and combined together, a so-call electrochemical surface-enhanced Raman spectroscopic (EC-SERS) experiment. In a 0.05 mol·L-1 sulfuric acid solution (pH = 1), an irreversible oxidation peak was found in the cyclic voltammogram, which is considered to correspond to the oxidation of the PATP molecule. The oxidation mechanism is proposed by combination of previous work in literature, and it is pointed out that the PATP molecule was initially transformed into cationic radical. Then, this cationic radical coupled with the PATP molecule to an intermediate NPQDH2 , and finally electrochemically oxidized to 4'-mercapto-N-phenylquinone diamine (NPQD). On the basis of this mechanism, the surface coverage of PATP on the electrode surface was calculated and the coverage value was found to be larger at the nanostructured electrode due to the modification of gold nanoparticles than that of general gold electrodes. In the following, the electrochemical oxidation product was characterized by the EC-SERS spectra. Finally, we experimentally and theoretically studied the electrochemical oxidation kinetics of PATP on the gold nanoparticle-modified gold electrode (Au NPs@Au). The apparent reaction rate constant k and transfer coefficient α of PATP were calculated by electrochemical linear sweeping voltammetry and theoretical simulation, respectively, finding that the cationic radical formation step is the rate-limiting step. We believe that this work will no doubt stimulate the basic research of PATP on gold electrodes consisting of nanostructures and provide a guide to electrochemical kinetic research in other metal-adsorbate systems.

Graphical Abstract


p-aminothiophenol, surface coverage, electrochemical surface-enhanced Raman spectroscopy, linear sweeping voltammetry, theoretical simulation

Publication Date


Online Available Date


Revised Date


Received Date



[1] Bryant M A, Joa S L, Pemberton J E. Raman-scattering from monolayer films of thiophenol and 4-mercaptopyridine at Pt surfaces[J]. Langmuir, 1992, 8(3): 753-756.
doi: 10.1021/la00039a002 URL

[2] Diem T, Czajka B, Weber B, Regen S L. Spontaneous assembly of phospholipid monolayers via adsorption onto gold[J]. J. Am. Chem. Soc., 1986, 108(19): 6094-6095.
doi: 10.1021/ja00279a099 pmid: 22175407

[3] Finklea H O, Avery S, Lynch M, Furtsch T. Blocking oriented monolayers of alkyl mercaptans on gold electrodes[J]. Langmuir, 1987, 3(3): 409-413.
doi: 10.1021/la00075a024 URL

[4] Hubbard A T. Electrochemistry at well-characterized surfaces[J]. Chem. Rev., 1988, 88(4): 633-656.
doi: 10.1021/cr00086a004 URL

[5] Nuzzo R G, Zegarski B R, Dubois L H. Fundamental-studies of the chemisorption of organosulfur compounds on Au(111)- Implications for molecular self-assembly on gold surfaces[J]. J. Am. Chem. Soc., 1987, 109(3): 733-740.
doi: 10.1021/ja00237a017 URL

[6] Porter M D, Bright T B, Allara D L, Chidsey C E D. Spontaneously organized molecular assemblies. 4. Structural characterization of normal-alkyl thiol monolayers on gold by optical ellipsometry, infrared-spectroscopy, and electrochemistry[J]. J. Am. Chem. Soc., 1987, 109(12): 3559-3568.
doi: 10.1021/ja00246a011 URL

[7] Campion A, Kambhampati P. Surface-enhanced Raman scattering[J]. Chem. Soc. Rev., 1998, 27(4): 241-250.
doi: 10.1039/a827241z URL

[8] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R, Feld M S. Single molecule detection using surface-enhanced Raman scattering (SERS)[J]. Phys. Rev. Lett., 1997, 78(9): 1667-1670.
doi: 10.1103/PhysRevLett.78.1667 URL

[9] Li J F, Huang Y F, Ding Y, Yang Z L, Li S B, Zhou X S, Fan F R, Zhang W, Zhou Z Y, Wu D Y, Ren B, Wang Z L, Tian Z Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
doi: 10.1038/nature08907 URL

[10] Otto A, Mrozek I, Grabhorn H, Akemann W. Surface-enhanced Raman-scattering[J]. J. Phys. Condens. Matter., 1992, 4(5): 1143-1212.
doi: 10.1088/0953-8984/4/5/001 URL

[11] Schlucker S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications[J]. Angew. Chem. Int. Ed., 2014, 53(19): 4756-4795.
doi: 10.1002/anie.201205748 URL

[12] Tian Z Q, Ren B, Wu D Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures[J]. J. Phys. Chem. B., 2002, 106(37): 9463-9483.
doi: 10.1021/jp0257449 URL

[13] Huang Y F, Wu D Y, Zhu H P, Zhao L B, Liu G K, Ren B, Tian Z Q. Surface-enhanced Raman spectroscopic study of p-aminothiophenol[J]. Phys. Chem. Chem. Phys., 2012, 14(24): 8485-8497.
doi: 10.1039/c2cp40558j URL

[14] Hutchison J A, Centeno S P, Odaka H, Fukumura H, Hofkens J, Uji-I H. Subdiffraction limited, remote excitation of surface enhanced Raman scattering[J]. Nano Lett., 2009, 9(3): 995-1001.
doi: 10.1021/nl8030696 pmid: 19199757

[15] Villarreal E, Li G F G, Zhang Q F, Fu X Q, Wang H. Nanoscale surface curvature effects on ligand-nanoparticle interactions: A plasmon-enhanced spectroscopic study of thiolated ligand adsorption, desorption, and exchange on gold nanoparticles[J]. Nano Lett., 2017, 17(7): 4443-4452.
doi: 10.1021/acs.nanolett.7b01593 pmid: 28590743

[16] Ward D R, Halas N J, Ciszek J W, Tour J M, Wu Y, Nordlander P, Natelson D. Simultaneous measurements of electronic conduction and Raman response in molecular junctions[J]. Nano Lett., 2008, 8(3): 919-924.
doi: 10.1021/nl073346h URL

[17] Wu D Y, Zhang M, Zhao L B, Huang Y F, Ren B, Tian Z Q. Surface plasmon-enhanced photochemical reactions on noble metal nanostructures[J]. Sci. China Chem., 2015, 58(4): 574-585.
doi: 10.1007/s11426-015-5316-y URL

[18] Huang Y F, Zhang M, Zhao L B, Feng J M, Wu D Y, Ren B, Tian Z Q. Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances[J]. Angew. Chem. Int. Ed., 2014, 53(9): 2353-2357.
doi: 10.1002/anie.201310097 URL

[19] Jiang R, Zhang M, Qian S L, Yan F, Pei L Q, Jin S, Zhao L B, Wu D Y, Tian Z Q. Photoinduced surface catalytic coupling reactions of aminothiophenol derivatives investigated by SERS and DFT[J]. J. Phys. Chem. C., 2016, 120(30): 16427-16436.
doi: 10.1021/acs.jpcc.6b04638 URL

[20] Wu D Y, Zhao L B, Liu X M, Huang R, Huang Y F, Ren B, Tian Z Q. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS[J]. Chem. Commun., 2011, 47(9): 2520-2522.
doi: 10.1039/c0cc05302c URL

[21] Zhan C, Wang Z Y, Zhang X G, Chen X J, Huang Y F, Hu S, Li J F, Wu D Y, Moskovits M, Tian Z Q. Interfacial construction of plasmonic nanostructures for the utilization of the plasmon-excited electrons and holes[J]. J. Am. Chem. Soc., 2019, 141(20): 8053-8057.
doi: 10.1021/jacs.9b02518 URL

[22] Patrito E M, Cometto F P, Paredes-Olivera P. Quantum mechanical investigation of thiourea adsorption on Ag(111) considering electric field and solvent effects[J]. J. Phys. Chem. B., 2004, 108(40): 15755-15769.
doi: 10.1021/jp048278r URL

[23] Lukkari J, Kleemola K, Meretoja M, Ollonqvist T, Kankare J. Electrochemical post-self-assembly transformation of 4-aminothiophenol monolayers on gold electrodes[J]. Langmuir, 1998, 14(7): 1705-1715.
doi: 10.1021/la970931x URL

[24] Raj C R, Kitamura F, Ohsaka T. Electrochemical and in situ FTIR spectroscopic investigation on the electrochemical transformation of 4-aminothiophenol on a gold electrode in neutral solution[J]. Langmuir, 2001, 17(23): 7378-7386.
doi: 10.1021/la010746q URL

[25] Wu D Y, Li J F, Ren B, Tian Z Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures[J]. Chem. Soc. Rev., 2008, 37(5): 1025-1041.
doi: 10.1039/b707872m URL

[26] Ling Y(凌云), Tang J(汤儆), Liu G K(刘国坤), Zong C(宗铖). Transient electrochemical surface-enhanced Raman spectroscopic study in electrochemical reduction of p-nitrothiophenol[J]. J. Electrochem.(电化学), 2019, 25(6): 731-739.

[27] Yuan Y X(袁亚仙), Yang F Z(杨凤珠), Liu W(刘伟), Wei P J(韦萍洁), Yao J L(姚建林), Gu R A(顾仁敖). Electrochemical SERS studies on the adsorption of benzoimidazole and derivative in nonaqueous solution[J]. J. Electrochem.(电化学), 2010, 16(3): 343-349.

[28] Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions[J]. Nat. Phys. Sci., 1973, 241(105): 20-22.
doi: 10.1038/physci241020a0 URL

[29] Carvalhal R T, Freire R S, Kubota L T. Polycrystalline gold electrodes: A comparative study of pretreatment procedures used for cleaning and thiol self-assembly monolayer formation[J]. Electroanalysis, 2005, 17(14): 1251-1259.
doi: 10.1002/elan.200403224 URL

[30] Sun R(孙如), Li S J(李淑瑾), Yao J L(姚建林), Gu R A(顾仁敖). Surface enhanced Raman spectroscopy and theoretical studies on the electrochemical transformation processes of 4-aminothiophenol on Au electrode[J]. Acta Chim. Sinica.(化学学报), 2007, 65(17): 1741-1745.

[31] Zhang P(张普), Wei Y(卫怡), Cai J(蔡俊), Chen Y X(陈艳霞), Tian Z Q(田中群). Nonlinear Stark effect observed for carbon monoxide chemisorbed on gold core/palladium shell nanoparticle film electrodes, using in situ surface-enhanced Raman spectroscopy[J]. Chin. J. Catal.(催化学报), 2016, 37(7): 1156-1165.

[32] Laviron E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems[J]. J. Electroanal. Chem., 1979, 101(1): 19-28.
doi: 10.1016/S0022-0728(79)80075-3 URL

[33] Andrieux C P, Legorande A, Saveant J M. Electron-Transfer and bond breaking - Examples of passage from a sequential to a concerted mechanism in the electrochemical reductive cleavage of Arylmethyl halides[J]. J. Am. Chem. Soc., 1992, 114(17): 6892-6904.
doi: 10.1021/ja00043a039 URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.