Corresponding Author

Xiong-Wu Kang(esxkang@scut.edu.cn)


The catalytic activity of the catalysts is strongly dependent on the structure of the catalysts, and the exploration of their correlation and structure-controlled synthesis of the high-performance catalysts are always at the central. Currently, platinum (Pt) is the optimum catalyst for hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and alcohol oxidation reaction, while ruthenium (Ru) behaves as the champion catalyst for oxygen evolution reaction (OER) during water splitting. Preparing alloy catalysts with these precious metals can modulate the catalytic activity of these catalysts from the perspective of strain effect, ensemble effect and ligand effect. Here, we developed a strategy to deposit AuPt alloy as a solid solution phase on amorphous Ru supported on CNTs, thus forming AuPt-Ru heterostructures. The well-defined AuPt-Ru heterostructured catalysts were examined by X-ray diffraction and elemental mapping in high-angle annular dark-field scanning transition electron spectroscopy (HAADF-STEM). As compared to the high crystallinity AuPt alloy, AuPt alloy in AuPt-Ru heterostructure became amorphous, and AuPt-Ru showed superior catalytic activity toward ethanol oxidation reaction (EOR), achieving the mass activity of Pt as high as 21.44 A·mg-1 due to the high tolerance toward the poisoning species. The intermediates species of the EOR were also examined by in-situ FTIR spectroscopy. The stability of the catalysts toward EOR was also excellent and the degradation in the activity of the catalysts was strongly related to the loss of Ru content during the stability test. The heterostructured AuPt-Ru catalysts also exhibited the excellent alkaline HER and OER performances, superior to those of commercial Pt/C and RuO2 catalysts, ascribing to the amorphous state of AuPt-Ru heterostructure, and the modulation by strain and ensemble effects. This work highlights the importance in the design of the multicomponent heterostructures for the synthesis of high-performance and multifunctional electrocatalysts.

Graphical Abstract


ruthenium, AuPt Alloy, heterostructure, ethanol oxidation, hydrogen evolution, oxygen evolution, fuel cell

Publication Date


Online Available Date


Revised Date


Received Date



[1] Deng R Y, Xia Z X, Sun R L, Wang S L, Sun G Q. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. J. Energy Chem., 2020, 43: 33-39.
doi: 10.1016/j.jechem.2019.07.015 URL

[2] Han S H, Liu H M, Chen P, Jiang J X, Chen Y. Porous trimetallic PtRhCu cubic nanoboxes for ethanol electrooxidation[J]. Adv. Energy Mater., 2018, 8(24): 1801326.
doi: 10.1002/aenm.201801326 URL

[3] Zhuang Z H, Chen W. Application of atomically precise metal nanoclusters in electrocatalysis[J]. J. Electrochem., 2021, 27(2): 125-143.

[4] Tang T, Jiang W J, Niu S, Hu J S. Design strategies toward highly active electrocatalysts for oxygen evolution reaction[J]. J. Electrochem., 2018, 24(5): 409-426.

[5] Wang K L, Wang F, Zhao Y F, Zhang W Q. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell[J]. J. Energy Chem., 2021, 52: 251-261.
doi: 10.1016/j.jechem.2020.04.056 URL

[6] Yu Z Y, Huang R, Liu J, Li G, Song Q T, Sun S G. Preparation of PdCoIr tetrahedron nanocatalysts and its performance toward ethanol oxidation reaction[J]. J. Electrochem., 2021, 27(1): 63-75.

[7] Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.

[8] Papaefthimiou V, Diebold M, Ulhaq-Bouillet C, Doh W H, Blume R, Zafeiratos S, Savinova E R. Potential-induced segregation phenomena in bimetallic PtAu nanoparticles: An in-situ near-ambient-pressure photoelectron spectros-copy study[J]. ChemElectroChem, 2015, 2(10): 1519-1526.
doi: 10.1002/celc.201500188 URL

[9] Sulaiman J E, Zhu S Q, Xing Z L, Chang Q W, Shao M H. Pt-Ni octahedra as electrocatalysts for the ethanol electro-oxidation reaction[J]. ACS Catalysis, 2017, 7(8): 5134-5141.
doi: 10.1021/acscatal.7b01435 URL

[10] Erini N, Beermann V, Gocyla M, Gliech M, Heggen M, Dunin-Borkowski R E, Strasser P. The effect of surface site ensembles on the activity and selectivity of ethanol electrooxidation by octahedral PtNiRh nanoparticles[J]. Angew. Chem. Int. Ed., 2017, 56(23): 6533-6538.
doi: 10.1002/anie.201702332 pmid: 28455907

[11] Zou J S, Wu M, Ning S L, Huang L, Kang X W, Chen S W. Ru@Pt core-shell nanoparticles: impact of the atomic ordering of the Ru metal core on the electrocatalytic activity of the Pt Shell[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 9007-9016.
doi: 10.1021/acssuschemeng.9b01270 URL

[12] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2[J]. Nat. Mater., 2009, 8(4): 325-330.
doi: 10.1038/nmat2359 pmid: 19169248

[13] Wei Y C, Liu C W, Wang K W. Improvement of oxygen reduction reaction and methanol tolerance characteristics for PdCo electrocatalysts by Au alloying and Co treatment[J]. Chem. Commun., 2011, 47(43): 11927-11929.
doi: 10.1039/c1cc15110j URL

[14] Liang Z X, Song L, Deng S Q, Zhu Y M, Stavitski E, Adzic R R, Chen J Y, Wang J X. Direct 12-electron oxidation of ethanol on a ternary Au(core)-PtIr(shell) electrocatalyst[J]. J. Am. Chem. Soc., 2019, 141(24): 9629-9636.
doi: 10.1021/jacs.9b03474 URL

[15] Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis[J]. Nat. Commun., 2019, 10: 2650.
doi: 10.1038/s41467-019-10303-z pmid: 31201304

[16] Guo Z W, Kang X W, Zheng X S, Huang J, Chen S W. PdCu alloy nanoparticles supported on CeO2 nanorods: Enhanced electrocatalytic activity by synergy of compressive strain, PdO and oxygen vacancy[J]. J. Catal., 2019, 374: 101-109.
doi: 10.1016/j.jcat.2019.04.027 URL

[17] Zhang X, Luo Z M, Yu P, Cai Y Q, Du Y H, Wu D X, Gao S, Tan C L, Li Z, Ren M Q, Osipowicz T, Chen S M, Jiang Z, Li J, Huang Y, Yang J, Chen Y, Ang C Y, Zhao Y L, Wang P, Song L, Wu X J, Liu Z, Borgna A, Zhang H. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution[J]. Nat. Catal., 2018, 1(6): 460-468.
doi: 10.1038/s41929-018-0072-y URL

[18] Zhang B, Zheng X L, Voznyy O, Comin R, Bajdich M, Garcia-Melchor M, Han L L, Xu J X, Liu M, Zheng L R, de Arquer F P G, Dinh C T, Fan F J, Yuan M J, Yassitepe E, Chen N, Regier T, Liu P F, Li Y H, De Luna P, Janmohamed A, Xin H L L, Yang H G, Vojvodic A, Sargent E H. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science, 2016, 352: 333-337.
doi: 10.1126/science.aaf1525 pmid: 27013427

[19] Kang X W, Miao K H, Guo Z W, Zou J S, Shi Z Q, Lin Z, Huang J, Chen S W. Pdru alloy nanoparticles of solid solution in atomic scale: Size effects on electronic structure and catalytic activity towards electrooxidation of formic acid and methanol[J]. J. Catal., 2018, 364: 183-191.
doi: 10.1016/j.jcat.2018.05.022 URL

[20] Zhu X R, Hu Z, Huang M, Zhao Y X, Qu J Q, Hu S. Au nanowires with high aspect ratio and atomic shell of Pt-Ru alloy for enhanced methanol oxidation reaction[J]. Chinese Chem Lett, 2021, 32(6): 2033-2037.
doi: 10.1016/j.cclet.2020.11.071 URL

[21] Wang X L, Cong Y Y, Qiu C X, Wang S J, Qin J Q, Song Y J. Core-shell structured Ru@PtRu nanoflower electrocatalysts toward alkaline hydrogen evolution reaction[J]. J. Electrochem., 2020, 26(6): 815-824.

[22] Hu X, Zou J S, Gao H C, Kang X W. Trimetallic Ru@AuPt core-shell nanostructures: The effect of microstrain on Co adsorption and electrocatalytic activity of formic acid oxidation[J]. J. Colloid Interf. Sci., 2020, 570: 72-79.
doi: 10.1016/j.jcis.2020.02.111 URL

[23] Liu K, Wang W, Guo P H, Ye J Y, Wang Y Y, Li P T, Lyu Z X, Geng Y S, Liu M C, Xie S F. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation[J]. Adv. Funct. Mater., 2019, 29(2): 1806300.
doi: 10.1002/adfm.201806300 URL

[24] Yang G X, Farsi L, Mei Y H, Xu X, Li A Y, Deskins N A, Teng X W. Conversion of ethanol via C-C splitting on noble metal surfaces in room-temperature liquid-phase[J]. J. Am. Chem. Soc., 2019, 141(24): 9444-9447.
doi: 10.1021/jacs.8b13115 URL

[25] Li H Q, Fan Q Y, Ye J Y, Cao Z M, Ma Z F, Jiang Y Q, Zhang J W, Cheng J, Xie Z X, Zheng L S. Excavated Rh nanobranches boost ethanol electro-oxidation[J]. Mater. Today Energy, 2019, 11: 120-127.

[26] Tan T H, Scott J, Ng Y H, Taylor R A, Aguey-Zinsou K F, Amal R. C-C cleavage by Au/TiO2 during ethanol oxidation: Understanding bandgap photoexcitation and plasmonically mediated charge transfer via quantitative in situ drifts[J]. ACS Catalysis, 2016, 6(12): 8021-8029.
doi: 10.1021/acscatal.6b01833 URL

[27] Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
doi: 10.1002/adma.201807780 URL

[28] Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
doi: 10.1039/D1TA03593B URL



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.