Corresponding Author

Yu-Feng Zhao(yufengzhao@shu.edu.cn);
Jiu-Jun Zhang(jiujun.zhang@i.shu.edu.cn)


This paper systematically summarizes the research progress of hard carbon anode materials in sodium ion batteries(SIBs) and the development of the corresponding sodium storage mechanism in recent years, and reviews the performance improvement strategies of hard carbon materials from the aspects of structural design and electrolyte regulation. The effects of the selection of precursors, carbonization temperature, pretreatment, pore formers, heteroatom doping, material compounding, electrolyte regulation and pre-sodiumization on the sodium storage performance of hard carbon anode materials are briefly described. This paper provides new insights into the design, synthesis and electrolyte
matching of high-performance and low-cost hard carbon materials, and looks forward to the direction of further research and development of SIBs hard carbon anode materials in the future.

Graphical Abstract


Sodium-ion battery, Hard carbon, Anode material, Sodium storage performance

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date


Online Available Date


Revised Date


Received Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.