Corresponding Author

Zhan-Ao Tan(tanzhanao@mail.buct.edu.cn)


Modification of electrode is vitally important for achieving high energy efficiency in aqueous quinone-based redox flow batteries (AQRFBs). The modification of graphite felt (GF) was carried out by means of urea hydrothermal reaction, and simultaneously, the effects of hydrothermal reaction time on the functional groups and surface structure of nitrogen-doped graphite felt were studied. The surface morphology and defect, element content and surface chemical state of the modified electrode were characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) test, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The electrochemical performance of the modified electrodes was evaluated by cyclic voltammetry, electrochemical impedance spectroscopy and single cell test. These results indicate that the specific surface area, hydrophilicity and conductivity of GF have been improved by nitrogen doping. The nitrogen-doped graphite felt (NGF) demonstrates an outstanding electrochemical catalytic activity and less charge transfer resistance. With the NGF, the battery exhibited 8.0% increase in the energy efficiency of aqueous quinone redox flow batteries at 100 mA·cm-2.

Graphical Abstract


Nitrogen-doped graphite felt; Energy efficiency; Aqueous quinone-based redox flow batteries; Charge transfer resistance; Hydrophilic

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date


Online Available Date


Revised Date


Received Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.