Corresponding Author

Kai Zhao (zhaokai01@qq.com);
Yi-Fei Sun( yfsun@xmu.edu.cn)


Solid oxide electrolysis cell (SOEC) is an efficient and clean energy conversion technology that can utilize electricity obtained from renewable resources, such as solar, wind, and geothermal energy to electrolyze water and produce hydrogen. The conversion of abundant intermittent energy to hydrogen energy would facilitate the efficient utilization of energy resources. SOEC is an all-ceramic electrochemical cell that operates in the intermediate to high temperature range of 500–750 ℃. Compared with traditional low temperature electrolysis technology (e.g., alkaline or proton exchange membrane cells operating at ~100 ℃), the high-temperature SOEC can increase the electrolysis efficiency from 80% to ~100%, providing a new way for energy saving.
The SOEC single cells with the nickel (Ni)-yttira-stabilized zirconia (YSZ) fuel electrode supported configuration have received most intensive research effort. This is due to the high catalytic activity and electronic conductivity of Ni, as well as good oxygen ionic conductivity of YSZ, promoting the electrochemical reduction of steam in fuel electrode. However, under the high steam partial pressures, the Ni in the electrode could be occasionally oxidized NiO at the high operation temperature, leading to volume expansion of the supporting layer. This phenomenon would induce internal stress in cell functional layers, resulting in cracking or even failure of the single cell.
To address the above mentioned issues, we propose a porous YSZ supported tubular single cell with a configuration of porous YSZ support, Ni-YSZ fuel electrode current collector, Ni-YSZ fuel electrode electrochemical functional layer, YSZ/Ce0.8Sm0.2O1.9 bi-layer electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-δ air electrode. As the porous YSZ substrate exhibits high chemical and structural stabilities in a wide range of oxygen and steam partial pressures under the SOEC operating conditions, employing the porous YSZ as the single cell support is expected to improve mechanical stability of the whole single cell. In this work, the porous YSZ supported tubular electrolysis cell has been fabricated by extrusion and dip-coating technique. The porosity, pore size and mechanical property of the YSZ support were investigated with respect to the amount of polymethyl methacrylate (PMMA) pore former. At the PMMA amount of 25 wt.%, the porous YSZ support showed the optimum porosity of 40%–45% and good bending strength of ~20 MPa. Electrochemical performance of the single cell for steam electrolysis has been characterized under the H2O-H2 co-feeding condition. At the operation temperature of 750 ℃, the H2 production rate reached 3 mL·min–1·cm–2 and the cell maintained 95% of its initial performance during 10 thermal cycles, demonstrating the feasibility of the novel porous YSZ supported tubular cell design for solid oxide electrolysis cell.

Graphical Abstract


Solid oxide electrolysis cell; Porous ceramic support; Tubular electrolysis cell; Electrochemical electrolysis

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date


Online Available Date


Revised Date


Received Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.