Corresponding Author

Shi-Bin Yin(yinshibin@gxu.edu.cn)


Exploiting highly active and non-noble metal bifunctional catalysts at large current density is significant for the advancement of water electrolysis. In this work, CeO2 electronically structure modulated FeNi bimetallic composite porous nanosheets in-situ grown on nickel foam (NiFe2O4-Fe24N10-CeO2/NF) is synthesized. Electrochemical experiments show that the NiFe2O4-Fe24N10-CeO2/NF exhibited the outstanding activities toward both oxygen and hydrogen evolution reactions (OER and HER) (η1000 = 352 mV and η1000 = 429 mV, respectively). When assembled into a two-electrode system for overall water splitting (OWS), it only needs a low cell voltage of 1.81 V to drive 100 mA·cm−2. And it can operate stably at ±500 mA·cm-2 over 30 h toward OER, HER and OWS without significant activity changes. The reason could be assigned to the electronic modulating of CeO2 on FeNi composite, which can boost the intrinsic activity and optimize the adsorption of reaction intermediates. Moreover, the porous nanosheets in-situ grown on NF could enhance the contact of active site with electrolyte and facilitate the gas release, thus improving its chemical and mechanical stabilities. This study highlights a novel approach to design bifunctional non-noble metal catalysts for water splitting at large current density.

Graphical Abstract


FeNi composite; hydrogen evolution reaction; oxygen evolution reaction; catalyst; water splitting

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date


Online Available Date


Revised Date


Received Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.