Corresponding Author

Xiao-Le Jiang (jiangxl@swun.edu.cn);
Yao-Yue Yang(yaoyueyoung@swun.edu.cn)


Rational design and synthesis of non-precious-metal catalyst plays an important role in improving the activity and stability for oxygen reduction reaction (ORR) but remains a major challenge. In this work, we used a facile approach to synthesize iron nanoparticles encapsulated in nitrogen-doped porous carbon materials (Fe@N-C) from functionalized metal-organic frameworks (MOFs, MET-6). Embedding Fe nanoparticles into the carbon skeleton increases the graphitization degree and the proportion of graphitic N as well as promotes the formation of mesopores in the catalyst. The Fe@N-C-30 catalyst showed the excellent ORR activity in alkaline solutions (E0 = 0.97 V vs. RHE, E1/2 = 0.89 V vs. RHE). Moreover, the Fe@N-C-30 catalyst exhibited better methanol resistance and long-term stability when compared to commercial Pt/C. The superior ORR performance could be attributed to the combination of high electrochemical surface area, relative high portion of graphitic-N, unique porous structures and the synergistic effect between the encapsulated Fe particles and the N-doped carbon layer. This work provides a promising method to construct efficient non-precious-metal ORR catalyst through MOFs.

Graphical Abstract


Metal-organic frameworks; Porous structures; Fe nanoparticles; Oxygen reduction reaction

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date


Online Available Date


Revised Date


Received Date




To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.