•  
  •  
 

Authors

Jian-hang HUANG, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;2. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China;
Xiao-li DONG, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;
Zhao-wei GUO, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;
Yuan-yuan MA, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;
Yan-rong WANG, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;
Yong-gang WANG, 1. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China;Follow

Corresponding Author

Yong-gang WANG(ygwang@fudan.edu.cn)

Abstract

Aqueous batteries have been considered to be a competitive candidate for large-scale energy storage. However, most of aqueous batteries adopt inorganic electrode materials with metallic elements, which are based on the reversible insertion of metal ions, making their application being highly hindered by limited cycle life, environmental issue, high cost and low reserves. On the other hand, organic electrode materials offer the advantages of abundant reserves, tunable structures, renewability and environmental benignity. Furthermore, the wide internal space enables these organics to flexibly store various charge carriers. Organics have been investigated as the alternative to inorganic electrode materials. Herein, we review the progress in organic electrode materials reported by our group, focusing on the reaction chemistry of organics with carbonyls for storing monovalent ions (Li+, Na+), divalent ion (Zn2+) and proton (H+), and the corresponding application in the field of metal ion batteries, proton batteries and the water electrolysis as redox buffer electrodes.

Graphical Abstract

Keywords

organic electrodes, aqueous batteries, metal ion batteries, hydronium batteries, decoupled water electrolysis

Publication Date

2020-08-28

Online Available Date

2020-06-17

Revised Date

2020-05-22

Received Date

2020-05-08

References

[1] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
URL pmid: 22096188

[2] Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017,356(6336):415-418.
doi: 10.1126/science.aak9991 URL pmid: 28450638

[3] Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010,2(9):760-765.
doi: 10.1038/nchem.763 URL pmid: 20729897

[4] Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994,264(5162):1115-1118.
URL pmid: 17744893

[5] Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014,7(1):14-18.

[6] Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6):1584-1596.

[7] Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019,3(1):1800272.

[8] Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018,3(10):2480-2501.

[9] Huang J H, Wang Z, Hou M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018,9(1):2906.
doi: 10.1038/s41467-018-04949-4 URL pmid: 30046036

[10] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020,4(3):127-142.

[11] Song Z P, Zhou H S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Energy & Environmental Science, 2013,6(8):2280-2301.

[12] Liang Y L, Yao Y. Positioning organic electrode materials in the battery landscape[J]. Joule, 2018,2(9):1690-1706.

[13] Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015,5(11):1402034.

[14] Peng H L, Yu Q C, Wang S P, et al. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes[J]. Advanced Science, 2019,6(17):1900431.
URL pmid: 31508272

[15] Chen L, Li W Y, Guo Z W, et al. Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes[J]. Journal of The Electrochemical Society, 2015,162(10):A1972-A1977.
doi: 10.1149/2.0101510jes URL

[16] Guo Z W, Ma Y Y, Dong X L, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018,57(36):11737-11741.
doi: 10.1002/anie.201807121 URL pmid: 30019809

[17] Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009,8(2):120-125.
doi: 10.1038/nmat2372 URL pmid: 19151701

[18] Qin H, Song Z P, Zhan H, et al. Aqueous rechargeable alkali-ion batteries with polyimide anode[J]. Journal of Power Sources, 2014,249:367-372.

[19] Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017,16(8):841-850.
doi: 10.1038/nmat4919 URL pmid: 28628121

[20] Jiang L W, Lu Y X, Zhao C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019,4(6):495-503.

[21] Dong X L, Chen L, Liu J Y, et al. Environmentally-friendly aqueous Li(or Na)-ion battery with fast electrode kinetics and super-long life[J]. Science Advances, 2016,2:e1501038.
URL pmid: 26844298

[22] Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte[J]. Chemistry - A European Journal, 2017,23(11):2560-2565.

[23] Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):e1805061.
doi: 10.1002/smll.201805061 URL pmid: 30848095

[24] Zhao Q, Huang W W, Luo Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018,4(3):eaao1761.
doi: 10.1126/sciadv.aao1761 URL pmid: 29511734

[25] Wang Y R, Wang C X, Ni Z G, et al. Binding zinc ion by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic battery[J]. Advanced Materials, 2020,32(16):2000338.

[26] Wang X F, Bommier C, Jian Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017,56(11):2909-2913.
doi: 10.1002/anie.201700148 URL pmid: 28181730

[27] Guo Z W, Huang J H, Dong X L, et al. An organic/inorganic electrode-based hydronium-ion battery[J]. Nature Communications, 2020,11(1):959.
URL pmid: 32075978

[28] Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014,345(6202):1326-1330.
doi: 10.1126/science.1257443 URL pmid: 25214625

[29] Mallouk T E. Water electrolysis: Divide and conquer[J]. Nature Chemistry, 2013,5(5):362-363.
doi: 10.1038/nchem.1634 URL pmid: 23609082

[30] Ma Y Y (马元元), Guo Z W (郭昭薇), Wang Y G (王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry (电化学), 2018,24(5):41-51.

[31] Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013,5(5):403-409.
doi: 10.1038/nchem.1621 URL pmid: 23609091

[32] Wallace A G, Symes M D. Decoupling strategies in electrochemical water splitting and beyond[J]. Joule, 2018,2(8):1390-1395.
doi: 10.1016/j.joule.2018.06.011 URL

[33] Ma Y Y, Guo Z W, Dong X L, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019,58(14):4622-4626.
doi: 10.1002/anie.201814625 URL pmid: 30706609

[34] Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018,57(11):2904-2908.
doi: 10.1002/anie.201800436 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.