Abstract
Aqueous batteries have been considered to be a competitive candidate for large-scale energy storage. However, most of aqueous batteries adopt inorganic electrode materials with metallic elements, which are based on the reversible insertion of metal ions, making their application being highly hindered by limited cycle life, environmental issue, high cost and low reserves. On the other hand, organic electrode materials offer the advantages of abundant reserves, tunable structures, renewability and environmental benignity. Furthermore, the wide internal space enables these organics to flexibly store various charge carriers. Organics have been investigated as the alternative to inorganic electrode materials. Herein, we review the progress in organic electrode materials reported by our group, focusing on the reaction chemistry of organics with carbonyls for storing monovalent ions (Li+, Na+), divalent ion (Zn2+) and proton (H+), and the corresponding application in the field of metal ion batteries, proton batteries and the water electrolysis as redox buffer electrodes.
Graphical Abstract
Keywords
organic electrodes, aqueous batteries, metal ion batteries, hydronium batteries, decoupled water electrolysis
Publication Date
2020-08-28
Online Available Date
2020-06-17
Revised Date
2020-05-22
Received Date
2020-05-08
Recommended Citation
Jian-hang HUANG, Xiao-li DONG, Zhao-wei GUO, Yuan-yuan MA, Yan-rong WANG, Yong-gang WANG.
Electrochemical Energy Storage and Conversion Based on Organic Electrodes[J]. Journal of Electrochemistry,
2020
,
26(4): 486-494.
DOI: 10.13208/j.electrochem.200445
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol26/iss4/5
References
[1]
Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935.
URL
pmid: 22096188
[2]
Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017,356(6336):415-418.
doi: 10.1126/science.aak9991
URL
pmid: 28450638
[3]
Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010,2(9):760-765.
doi: 10.1038/nchem.763
URL
pmid: 20729897
[4]
Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994,264(5162):1115-1118.
URL
pmid: 17744893
[5] Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014,7(1):14-18.
[6] Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6):1584-1596.
[7] Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019,3(1):1800272.
[8] Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018,3(10):2480-2501.
[9]
Huang J H, Wang Z, Hou M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018,9(1):2906.
doi: 10.1038/s41467-018-04949-4
URL
pmid: 30046036
[10] Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020,4(3):127-142.
[11] Song Z P, Zhou H S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Energy & Environmental Science, 2013,6(8):2280-2301.
[12] Liang Y L, Yao Y. Positioning organic electrode materials in the battery landscape[J]. Joule, 2018,2(9):1690-1706.
[13] Häupler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015,5(11):1402034.
[14]
Peng H L, Yu Q C, Wang S P, et al. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes[J]. Advanced Science, 2019,6(17):1900431.
URL
pmid: 31508272
[15]
Chen L, Li W Y, Guo Z W, et al. Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes[J]. Journal of The Electrochemical Society, 2015,162(10):A1972-A1977.
doi: 10.1149/2.0101510jes
URL
[16]
Guo Z W, Ma Y Y, Dong X L, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018,57(36):11737-11741.
doi: 10.1002/anie.201807121
URL
pmid: 30019809
[17]
Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009,8(2):120-125.
doi: 10.1038/nmat2372
URL
pmid: 19151701
[18] Qin H, Song Z P, Zhan H, et al. Aqueous rechargeable alkali-ion batteries with polyimide anode[J]. Journal of Power Sources, 2014,249:367-372.
[19]
Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017,16(8):841-850.
doi: 10.1038/nmat4919
URL
pmid: 28628121
[20] Jiang L W, Lu Y X, Zhao C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019,4(6):495-503.
[21]
Dong X L, Chen L, Liu J Y, et al. Environmentally-friendly aqueous Li(or Na)-ion battery with fast electrode kinetics and super-long life[J]. Science Advances, 2016,2:e1501038.
URL
pmid: 26844298
[22] Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte[J]. Chemistry - A European Journal, 2017,23(11):2560-2565.
[23]
Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):e1805061.
doi: 10.1002/smll.201805061
URL
pmid: 30848095
[24]
Zhao Q, Huang W W, Luo Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018,4(3):eaao1761.
doi: 10.1126/sciadv.aao1761
URL
pmid: 29511734
[25] Wang Y R, Wang C X, Ni Z G, et al. Binding zinc ion by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic battery[J]. Advanced Materials, 2020,32(16):2000338.
[26]
Wang X F, Bommier C, Jian Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017,56(11):2909-2913.
doi: 10.1002/anie.201700148
URL
pmid: 28181730
[27]
Guo Z W, Huang J H, Dong X L, et al. An organic/inorganic electrode-based hydronium-ion battery[J]. Nature Communications, 2020,11(1):959.
URL
pmid: 32075978
[28]
Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014,345(6202):1326-1330.
doi: 10.1126/science.1257443
URL
pmid: 25214625
[29]
Mallouk T E. Water electrolysis: Divide and conquer[J]. Nature Chemistry, 2013,5(5):362-363.
doi: 10.1038/nchem.1634
URL
pmid: 23609082
[30] Ma Y Y (马元元), Guo Z W (郭昭薇), Wang Y G (王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry (电化学), 2018,24(5):41-51.
[31]
Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013,5(5):403-409.
doi: 10.1038/nchem.1621
URL
pmid: 23609091
[32]
Wallace A G, Symes M D. Decoupling strategies in electrochemical water splitting and beyond[J]. Joule, 2018,2(8):1390-1395.
doi: 10.1016/j.joule.2018.06.011
URL
[33]
Ma Y Y, Guo Z W, Dong X L, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019,58(14):4622-4626.
doi: 10.1002/anie.201814625
URL
pmid: 30706609
[34]
Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018,57(11):2904-2908.
doi: 10.1002/anie.201800436
URL
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons