•  
  •  
 

Corresponding Author

Xue-Ping Qin(xqinaa@connect.ust.hk);
Min-Hua Shao(kemshao@ust.hk)

Abstract

Single atom catalysts (SAC) have been regarded as the promising alternatives to platinum group metals due to their low costs and potentially high catalytic activities in various electrocatalytic reactions. The atomic mechanism understanding of activity discrepancy among different metal and nitrogen co-doped carbon-based catalysts is still lacking. Here, non-precious metal and nitrogen co-doped carbons (Me-N-C, Me = Fe and Co) as the model catalysts are investigated by combining experimental and theoretical studies to explore the catalytic activities and corresponding reaction mechanisms toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at universal pHs. Atomic theoretical simulations suggest that Fe-N-C has higher ORR activity than Co-N-C due to its lower reaction barrier of the rate-determining step, while the activity trend is reversed for HER. Our simulation results are consistent with experimental observations.

Graphical Abstract

Keywords

oxygen reduction reaction, hydrogen evolution reaction, electrocatalysts, single atom catalysts, theoretical calculations

Publication Date

2021-04-28

Online Available Date

2021-03-20

Revised Date

2021-03-10

Received Date

2021-02-02

References

[1] Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016,1(1):15006.
doi: 10.1038/nenergy.2015.6 URL

[2] Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angew. Chem. Int. Ed., 2015,54(15):4646-4650.
doi: 10.1002/anie.201411125 URL

[3] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764.
doi: 10.1126/science.1168049 URL

[4] Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011,10(10):780-786.
doi: 10.1038/nmat3087 URL

[5] Michalsky R, Zhang Y J, Peterson A A. Trends in the hydrogen evolution activity of metal carbide catalysts[J]. ACS Catal., 2014,4(5):1274-1278.
doi: 10.1021/cs500056u URL

[6] Cao B, Veith G M, Neuefeind J C, Adzic R R, Khalifah P G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2013,135(51):19186-19192.
doi: 10.1021/ja4081056 URL

[7] Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction[J]. Proc. Natl. Acad. Sci., 2013,110(49):19701-19706.
doi: 10.1073/pnas.1316792110 URL

[8] Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832 URL

[9] Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
doi: 10.1021/acs.chemrev.5b00462 URL

[10] Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324(5923):71-74.
doi: 10.1126/science.1170051 URL

[11] Zhang Y F(张焰峰), Xiao F(肖菲), Chen G Y(陈广宇), Shao M H(邵敏华). Fuel cell performance of non-precious metal based electrocatalysts[J]. J. Electrochem.(电化学) 2020,26(4):563-572.

[12] Xiu L Y(修陆洋), Yu M Z(于梦舟), Yang P J(杨鹏举), Wang Z Y(王治宇), Qiu J S(邱介山). Caging porous Co-NC nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. J. Electrochem.(电化学) 2018,24(6):715-725.

[13] Zhang L L, Liu W, Dou Y B, Du Z, Shao M H. The role of transition metal and nitrogen in metal-N-C composites for hydrogen evolution reaction at universal pHs[J]. J. Phys. Chem. C, 2016,120(51):29047-29053.
doi: 10.1021/acs.jpcc.6b11782 URL

[14] Shahraei A, Moradabadi A, Martinaiou I, Lauterbach S, Klemenz S, Dolique S, Kleebe H J, Kaghazchi P, Kramm U I. Elucidating the origin of hydrogen evolution reaction activity in mono- and bimetallic metal- and nitrogen-doped carbon catalysts (Me-N-C)[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25184-25193.
doi: 10.1021/acsami.7b01647 URL

[15] Zhu Z J, Chen C M, Cai M Q, Cai Y, Ju H X, Hu S W, Zhang M. Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates[J]. Mater. Res. Bull., 2019,114:161-169.
doi: 10.1016/j.materresbull.2019.02.029 URL

[16] Chen L Y, Liu X F, Zheng L R, Li Y C, Guo X, Wan X, Liu Q T, Shang J X, Shui J L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts[J]. Appl. Catal. B Environ., 2019,256:117849.
doi: 10.1016/j.apcatb.2019.117849 URL

[17] Ai K L, Li Z L, Cui X Q. Scalable preparation of sized-controlled Co-N-Celectrocatalyst for efficient oxygen reduction reaction[J]. J. Power Sources, 2017,368:46-56.
doi: 10.1016/j.jpowsour.2017.09.067 URL

[18] Sebastián D, Serov A, Artyushkova K, Gordon J, Atanass-ov P, Aricò A S, Baglio V. High performance and cost-effective direct methanol fuel cells: Fe-NC methanol-tolerant oxygen reduction reaction catalysts[J]. ChemSus-Chem, 2016,9(15):1986-1995.

[19] Wang Y, Pan Y, Zhu L K, Yu H H, Duan B Y, Wang R W, Zhang Z T, Qiu S L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER[J]. Carbon, 2019,146:671-679.
doi: 10.1016/j.carbon.2019.02.002

[20] Zhang G X, Chenitz R, Lefèvre M, Sun S, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016,29:111-125.
doi: 10.1016/j.nanoen.2016.02.038 URL

[21] Zhang G X, Wei Q L, Yang X H, Tavares A C, Sun S H. RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution[J]. Appl. Catal. B Environ., 2017,206:115-126.
doi: 10.1016/j.apcatb.2017.01.001 URL

[22] Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561.
doi: 10.1103/PhysRevB.47.558 URL

[23] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50.
doi: 10.1016/0927-0256(96)00008-0 URL

[24] Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979.
doi: 10.1103/PhysRevB.50.17953 URL

[25] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775.
doi: 10.1103/PhysRevB.59.1758 URL

[26] Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys. Rev. B, 1999,59(11):7413-7421.
doi: 10.1103/PhysRevB.59.7413 URL

[27] Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192.
doi: 10.1103/PhysRevB.13.5188 URL

[28] Van Den Bossche M, Skúlason E, Rose-Petruck C, Jónsson H. Assessment of constant-potential implicit solvation calculations of electrochemical energy barriers for H2 evolution on Pt[J]. J. Phys. Chem. C, 2019,123(7):4116-4124.
doi: 10.1021/acs.jpcc.8b10046

[29] Zhang Q, Asthagiri A. Solvation effects on DFT predictions of ORR activity on metal surfaces[J]. Catal. Today, 2019,323:35-43.
doi: 10.1016/j.cattod.2018.07.036 URL

[30] Liu S Z, White M G, Liu P. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface[J]. J. Phys. Chem. C, 2016,120(28):15288-15298.
doi: 10.1021/acs.jpcc.6b05126 URL

[31] Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L G M, Nilsson A. Structure and bonding of water on Pt(111)[J]. Phys. Rev. Lett., 2002,89(27):276102.
pmid: 12513221

[32] Liu K X, Qiao Z, Hwang S, Liu Z Y, Zhang H G, Su D, Xu H, Wu G, Wang G F. Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation[J]. Appl. Catal. B - Environ., 2019,243:195-203.
doi: 10.1016/j.apcatb.2018.10.034 URL

[33] Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014,140(8):084106.
doi: 10.1063/1.4865107 URL

[34] Petrosyan S A, Rigos A A, Arias T A. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution[J]. J. Phys. Chem. B, 2005,109(32):15436-15444.
pmid: 16852958

[35] Valter M, Wickman B, Hellman A. Solvent effects for methanol electrooxidation on gold[J]. J. Phys. Chem. C, 2021,125(2):1355-1360.
doi: 10.1021/acs.jpcc.0c08923 URL

[36] Gauthier J A, Dickens C F, Heenen H H, Vijay S, Ringe S, Chan K. Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics[J]. J. Chem. Theory Comput., 2019,15(12):6895-6906.
doi: 10.1021/acs.jctc.9b00717 pmid: 31689089

[37] Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004,108(46):17886-17892.
doi: 10.1021/jp047349j URL

[38] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J. Chem. Phys., 2000,113(22):9978-9985.

[39] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000,113(22):9901-9904.

[40] Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths[J]. J. Chem. Phys., 2008,128(13):134106.
doi: 10.1063/1.2841941 pmid: 18397052

[41] Chen S Q, Zhang N J, Villarrubia C W N, Huang X, Xie L, Wang X Y, Kong X D, Xu H, Wu G, Zeng J, Wang H L. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media[J]. Nano Energy, 2019,66:104164.
doi: 10.1016/j.nanoen.2019.104164 URL

[42] Liu K X, Kattel S, Mao V, Wang G F. Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium[J]. J. Phys. Chem. C, 2016,120(3):1586-1596.
doi: 10.1021/acs.jpcc.5b10334 URL

[43] Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006,45(3):402-406.
doi: 10.1002/(ISSN)1521-3773 URL

[44] Yeh K Y, Janik M J. Density functional theory-based electrochemical models for the oxygen reduction reaction: Comparison of modeling approaches for electric field and solvent effects[J]. J. Comput. Chem., 2011,32(16):3399-3408.
doi: 10.1002/jcc.v32.16 URL

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.