Abstract
Single atom catalysts (SAC) have been regarded as the promising alternatives to platinum group metals due to their low costs and potentially high catalytic activities in various electrocatalytic reactions. The atomic mechanism understanding of activity discrepancy among different metal and nitrogen co-doped carbon-based catalysts is still lacking. Here, non-precious metal and nitrogen co-doped carbons (Me-N-C, Me = Fe and Co) as the model catalysts are investigated by combining experimental and theoretical studies to explore the catalytic activities and corresponding reaction mechanisms toward oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) at universal pHs. Atomic theoretical simulations suggest that Fe-N-C has higher ORR activity than Co-N-C due to its lower reaction barrier of the rate-determining step, while the activity trend is reversed for HER. Our simulation results are consistent with experimental observations.
Graphical Abstract
Keywords
oxygen reduction reaction, hydrogen evolution reaction, electrocatalysts, single atom catalysts, theoretical calculations
Publication Date
2021-04-28
Online Available Date
2021-03-20
Revised Date
2021-03-10
Received Date
2021-02-02
Recommended Citation
Xue-Ping Qin, Shang-Qian Zhu, Lu-Lu Zhang, Shu-Hui Sun, Min-Hua Shao.
Theoretical Studies of Metal-N-C for Oxygen Reduction and Hydrogen Evolution Reactions in Acid and Alkaline Solutions[J]. Journal of Electrochemistry,
2021
,
27(2): 185-194.
DOI: 10.13208/j.electrochem.201248
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol27/iss2/4
References
[1]
Xia B Y, Yan Y, Li N, Wu H B, Lou X W, Wang X. A metal-organic framework-derived bifunctional oxygen electrocatalyst[J]. Nat. Energy, 2016,1(1):15006.
doi: 10.1038/nenergy.2015.6
URL
[2]
Ma T Y, Ran J, Dai S, Jaroniec M, Qiao S Z. Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: Flexible and reversible oxygen electrodes[J]. Angew. Chem. Int. Ed., 2015,54(15):4646-4650.
doi: 10.1002/anie.201411125
URL
[3]
Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009,323(5915):760-764.
doi: 10.1126/science.1168049
URL
[4]
Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011,10(10):780-786.
doi: 10.1038/nmat3087
URL
[5]
Michalsky R, Zhang Y J, Peterson A A. Trends in the hydrogen evolution activity of metal carbide catalysts[J]. ACS Catal., 2014,4(5):1274-1278.
doi: 10.1021/cs500056u
URL
[6]
Cao B, Veith G M, Neuefeind J C, Adzic R R, Khalifah P G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2013,135(51):19186-19192.
doi: 10.1021/ja4081056
URL
[7]
Wang H T, Lu Z Y, Xu S C, Kong D S, Cha J J, Zheng G Y, Hsu P C, Yan K, Bradshaw D, Prinz F B, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction[J]. Proc. Natl. Acad. Sci., 2013,110(49):19701-19706.
doi: 10.1073/pnas.1316792110
URL
[8]
Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
doi: 10.1126/science.1200832
URL
[9]
Shao M H, Chang Q W, Dodelet J P, Chenitz R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016,116(6):3594-3657.
doi: 10.1021/acs.chemrev.5b00462
URL
[10]
Lefèvre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells[J]. Science, 2009,324(5923):71-74.
doi: 10.1126/science.1170051
URL
[11] Zhang Y F(张焰峰), Xiao F(肖菲), Chen G Y(陈广宇), Shao M H(邵敏华). Fuel cell performance of non-precious metal based electrocatalysts[J]. J. Electrochem.(电化学) 2020,26(4):563-572.
[12] Xiu L Y(修陆洋), Yu M Z(于梦舟), Yang P J(杨鹏举), Wang Z Y(王治宇), Qiu J S(邱介山). Caging porous Co-NC nanocomposites in 3D graphene as active and aggregation-resistant electrocatalyst for oxygen reduction reaction[J]. J. Electrochem.(电化学) 2018,24(6):715-725.
[13]
Zhang L L, Liu W, Dou Y B, Du Z, Shao M H. The role of transition metal and nitrogen in metal-N-C composites for hydrogen evolution reaction at universal pHs[J]. J. Phys. Chem. C, 2016,120(51):29047-29053.
doi: 10.1021/acs.jpcc.6b11782
URL
[14]
Shahraei A, Moradabadi A, Martinaiou I, Lauterbach S, Klemenz S, Dolique S, Kleebe H J, Kaghazchi P, Kramm U I. Elucidating the origin of hydrogen evolution reaction activity in mono- and bimetallic metal- and nitrogen-doped carbon catalysts (Me-N-C)[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25184-25193.
doi: 10.1021/acsami.7b01647
URL
[15]
Zhu Z J, Chen C M, Cai M Q, Cai Y, Ju H X, Hu S W, Zhang M. Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates[J]. Mater. Res. Bull., 2019,114:161-169.
doi: 10.1016/j.materresbull.2019.02.029
URL
[16]
Chen L Y, Liu X F, Zheng L R, Li Y C, Guo X, Wan X, Liu Q T, Shang J X, Shui J L. Insights into the role of active site density in the fuel cell performance of Co-N-C catalysts[J]. Appl. Catal. B Environ., 2019,256:117849.
doi: 10.1016/j.apcatb.2019.117849
URL
[17]
Ai K L, Li Z L, Cui X Q. Scalable preparation of sized-controlled Co-N-Celectrocatalyst for efficient oxygen reduction reaction[J]. J. Power Sources, 2017,368:46-56.
doi: 10.1016/j.jpowsour.2017.09.067
URL
[18] Sebastián D, Serov A, Artyushkova K, Gordon J, Atanass-ov P, Aricò A S, Baglio V. High performance and cost-effective direct methanol fuel cells: Fe-NC methanol-tolerant oxygen reduction reaction catalysts[J]. ChemSus-Chem, 2016,9(15):1986-1995.
[19]
Wang Y, Pan Y, Zhu L K, Yu H H, Duan B Y, Wang R W, Zhang Z T, Qiu S L. Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER[J]. Carbon, 2019,146:671-679.
doi: 10.1016/j.carbon.2019.02.002
[20]
Zhang G X, Chenitz R, Lefèvre M, Sun S, Dodelet J P. Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?[J]. Nano Energy, 2016,29:111-125.
doi: 10.1016/j.nanoen.2016.02.038
URL
[21]
Zhang G X, Wei Q L, Yang X H, Tavares A C, Sun S H. RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution[J]. Appl. Catal. B Environ., 2017,206:115-126.
doi: 10.1016/j.apcatb.2017.01.001
URL
[22]
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals[J]. Phys. Rev. B, 1993,47(1):558-561.
doi: 10.1103/PhysRevB.47.558
URL
[23]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput. Mater. Sci., 1996,6(1):15-50.
doi: 10.1016/0927-0256(96)00008-0
URL
[24]
Blöchl P E. Projector augmented-wave method[J]. Phys. Rev. B, 1994,50(24):17953-17979.
doi: 10.1103/PhysRevB.50.17953
URL
[25]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999,59(3):1758-1775.
doi: 10.1103/PhysRevB.59.1758
URL
[26]
Hammer B, Hansen L B, Nørskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals[J]. Phys. Rev. B, 1999,59(11):7413-7421.
doi: 10.1103/PhysRevB.59.7413
URL
[27]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations[J]. Phys. Rev. B, 1976,13(12):5188-5192.
doi: 10.1103/PhysRevB.13.5188
URL
[28]
Van Den Bossche M, Skúlason E, Rose-Petruck C, Jónsson H. Assessment of constant-potential implicit solvation calculations of electrochemical energy barriers for H2 evolution on Pt[J]. J. Phys. Chem. C, 2019,123(7):4116-4124.
doi: 10.1021/acs.jpcc.8b10046
[29]
Zhang Q, Asthagiri A. Solvation effects on DFT predictions of ORR activity on metal surfaces[J]. Catal. Today, 2019,323:35-43.
doi: 10.1016/j.cattod.2018.07.036
URL
[30]
Liu S Z, White M G, Liu P. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface[J]. J. Phys. Chem. C, 2016,120(28):15288-15298.
doi: 10.1021/acs.jpcc.6b05126
URL
[31]
Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson L G M, Nilsson A. Structure and bonding of water on Pt(111)[J]. Phys. Rev. Lett., 2002,89(27):276102.
pmid: 12513221
[32]
Liu K X, Qiao Z, Hwang S, Liu Z Y, Zhang H G, Su D, Xu H, Wu G, Wang G F. Mn- and N- doped carbon as promising catalysts for oxygen reduction reaction: Theoretical prediction and experimental validation[J]. Appl. Catal. B - Environ., 2019,243:195-203.
doi: 10.1016/j.apcatb.2018.10.034
URL
[33]
Mathew K, Sundararaman R, Letchworth-Weaver K, Arias T A, Hennig R G. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. J. Chem. Phys., 2014,140(8):084106.
doi: 10.1063/1.4865107
URL
[34]
Petrosyan S A, Rigos A A, Arias T A. Joint density-functional theory: Ab initio study of Cr2O3 surface chemistry in solution[J]. J. Phys. Chem. B, 2005,109(32):15436-15444.
pmid: 16852958
[35]
Valter M, Wickman B, Hellman A. Solvent effects for methanol electrooxidation on gold[J]. J. Phys. Chem. C, 2021,125(2):1355-1360.
doi: 10.1021/acs.jpcc.0c08923
URL
[36]
Gauthier J A, Dickens C F, Heenen H H, Vijay S, Ringe S, Chan K. Unified approach to implicit and explicit solvent simulations of electrochemical reaction energetics[J]. J. Chem. Theory Comput., 2019,15(12):6895-6906.
doi: 10.1021/acs.jctc.9b00717
pmid: 31689089
[37]
Nørskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin J R, Bligaard T, Jónsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004,108(46):17886-17892.
doi: 10.1021/jp047349j
URL
[38] Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points[J]. J. Chem. Phys., 2000,113(22):9978-9985.
[39] Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. J. Chem. Phys., 2000,113(22):9901-9904.
[40]
Sheppard D, Terrell R, Henkelman G. Optimization methods for finding minimum energy paths[J]. J. Chem. Phys., 2008,128(13):134106.
doi: 10.1063/1.2841941
pmid: 18397052
[41]
Chen S Q, Zhang N J, Villarrubia C W N, Huang X, Xie L, Wang X Y, Kong X D, Xu H, Wu G, Zeng J, Wang H L. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media[J]. Nano Energy, 2019,66:104164.
doi: 10.1016/j.nanoen.2019.104164
URL
[42]
Liu K X, Kattel S, Mao V, Wang G F. Electrochemical and computational study of oxygen reduction reaction on nonprecious transition metal/nitrogen doped carbon nanofibers in acid medium[J]. J. Phys. Chem. C, 2016,120(3):1586-1596.
doi: 10.1021/acs.jpcc.5b10334
URL
[43]
Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006,45(3):402-406.
doi: 10.1002/(ISSN)1521-3773
URL
[44]
Yeh K Y, Janik M J. Density functional theory-based electrochemical models for the oxygen reduction reaction: Comparison of modeling approaches for electric field and solvent effects[J]. J. Comput. Chem., 2011,32(16):3399-3408.
doi: 10.1002/jcc.v32.16
URL
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons