Abstract
Cu-TiO_(2)/ITO films were prepared by direct photo-reduction deposition of Cu~(2+) on TiO_(2)/ITO films. The nanocomposite films were characterized by UV-vis diffuse reflectance spectra (DRS), XRD spectra, Scanning Electron Microscope (SEM) technology, and photovoltage measurement. The feasibility of improving the photocatalytic activity of TiO_(2) film by combining the modification of Cu nanoparticles with the application of anodic bias was investigated. The experimental results showed that the deposited Cu has an apparent enhancement effect with respect to suppressing the recombination between the photogenerated charge carriers and enhancing the photocatalytic oxidation of formic acid. The combination could promote the photocatalytic oxidation of formic acid on the film, with respect to the degradation of formic acid, the rate constant in PEC degradation of Cu-TiO_(2)/ITO film increased by a factor of 2.8 relative to that of TiO_(2)film.
Keywords
Photoelectrocatalysis, TiO_(2), Organic pollutants, Formic acid
Publication Date
2004-05-28
Online Available Date
2004-05-28
Revised Date
2004-05-28
Received Date
2004-05-28
Recommended Citation
Dong SHU.
Preparation, Characterization and Photoelectrochemical Activities of Cu-TiO_2/ITO Films[J]. Journal of Electrochemistry,
2004
,
10(2): 197-204.
DOI: 10.61558/2993-074X.1565
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss2/11
References
[1] FujishimaA,KondaK.Electrochemicalphotolysisofwateratasemiconductorelectrode[J].Nature,1972,238:37.
[2] TrykDA,FujishimaA,HondaK.Recenttopicsinphotoelectrochemistry:achievementsandfutureprospects[J].ElectrochimicaActa,2000,45:2363~2376.
[3] FujishimaA,RaoTN,TrykDA,Titaniumdioxidephotocatalysis.J.Photochem[J].PhotobioC:Photochem.Rev.,2000,1:1~21.
[4] KobayakawaK,SatoC,SatoY,FujishimaA.Continuous flowphotoreactorpackedwithtitaniumdioxideimmobilizedonlargesilicagelbeadstodecomposeoxalicacidinexcesswater[J].J.Photochem.Photobio.A,1998,118(1):65~69.
[5] SubramaniaV,WolfE,KamatPV.Semiconductor metalcompositenanostructures.TowhatextentdometalnanoparticlesimprovethephotocatalyticactivityofTiO2[J].Phys.Chem.B,2001,105(46):11439~11446.
[6] HufschmidtD,BahnemannD,TestaJJ,etal.EnhancementofthephotocatalyticactivityofvariousTiO2materialsbyplatinisation[J].J.Photochem.andPhotobio.A:Chem.,2002,148:223~231.
[7] DawsonA,KamatPV.Semiconductor metalnanocomposites.photoinducedfusionandphotocatalysisofgold cappedTiO2(TiO2/gold)nanoparticles[J].J.Phys.Chem.B,2001,105(5):960~966.
[8] GiersigM,MulvaneyP.Formationoforderedtwo dimensionalgoldcolloidlatticesbyelectrophoreticdeposition[J].J.Phys.Chem.,1993,97:6334~6336.
[9] LiY,LuG,LiS.PhotocatalytichydrogengenerationanddecompositionofoxalicacidoverplatinizedTiO2[J].Appl.Catal.A,2001,214:179~185.
[10] AbdullahM,LowGKC,MattewsRW.Effectsofcommoninorganicanionsonratesofphotocatalyticoxidationoforganiccarbonoverilluminatedtitaniumdioxide[J].J.Phys.Chem.,1990,94(17):6820~6825.
[11] WangC,LiuC.Thesurfacechemistryofhybridnanometer sizedparticlesI.PhotochemicaldepositionofgoldonultrafineTiO2particles[J].ColloidsandSurfacesA:PhysicochemicalandEngineeringAspects,1998,131(1~3):271~280.
[12] HeC,XiongY,ShuD,etal.EnhancedphotocatalyticefficiencyofTiO2bycombiningthemodificationofAgnanoparticleswiththeapplicationofanodicbias.ChineseChemicalLetter,2003,14(5):539~542.
[13] CandalRJ,ZeltnerWA,AndersonMA.EffectofpHandappliedpotentialonphotocurrentandoxidationrateofsalinesolutionsofformicacidinaphotoelectrocatalticreactor[J].Environ.Sci.Technol.,2000,34:3443~3451.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Physical Chemistry Commons, Power and Energy Commons, Semiconductor and Optical Materials Commons