Abstract
The interactions of jamesonite with diethyl dithiocarbamate (DDTC) were studied by AC impedance measurement and cyclic voltammetry. Several electrode processes under different potential conditions were observed. There mainly is the absorption of hydrophobic DDTC. PbD_2, S~0 etc on the surface of jamesonite mineral from -178 mV to 472 mV (vs. SHE) and the interfacial capacitance also is small. When the electrode potential is over 472 mV, the surface of jamesonite mineral is of hydrophilicity due to the fact that hydrophobic PbD_2,S~0 etc are oxidized into hydrophilic products such as Pb~(2+), SO_3~(2-) ,SO_4~(2-), PbSO_4. So it was deduced that the potential range of jamesonite flotation using diethyl dithiocarbmate as a collector is from -178 mV to 472 mV, and its optimum potential range is between 122 mV and 222 mv due to the passive action by the hydrophobic species.
Keywords
Jamesonite, Flotation, Electrochemisty
Publication Date
2004-05-28
Online Available Date
2004-05-28
Revised Date
2004-05-28
Received Date
2004-05-28
Recommended Citation
Run-lan YU.
An Electrochemical Study of DDTC Adsorption Jamesonite[J]. Journal of Electrochemistry,
2004
,
10(2): 145-153.
DOI: 10.61558/2993-074X.1559
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss2/5
References
[1] BuckleyAN,WoodsR.Underpotentialdepositionofdithiophosphateonchalcocite[J].J.Electroanal.Chem.,1993,357:387~450.
[2] BuckleyAN,WoodsR.IdentifyingchemisoptionintheinteractionofthiocollectorswithsulfidemineralsbyXPS:adsorptionofxanthateonsilverandsilvesulfide[J].ColloidsSurf.,1995,104:295~305.
[3] BuckleyAN,WoodsR.Chemisorptionthethermodynamicallyfavoredprocessintheinteractionofthiocollectorswithsulfideminerals[J].Int.J.Miner.Process,1997,51:15~26.
[4] ChengYufeng,DuYuanlaong,CaoChunan.Inhibitionandadsorption/desorptionofcyclohexylaminephosphateinNa2SO4solution[J].TheJournalofChineseSocietyforCorrosionandProtection,1997,17(2):142~145.
[5] FuerstenauMC,MillerJD,KuhnMC.ChemistryofFlotation[M].NewYork:Am.Inst.Min.Metall.Pet.Eng.,1985.
[6] GuGuo-hua,HuYue hua,QiuGuan zhou,etal.Electrochemistryofgalenainhighalkalineflotation[J].MiningandMetallurgicalEngineering,2002,221(1):52~55.
[7] HamiltonIC,WoodsR.AVoltammetricStrdyoftheSurfaceOxidationofSaulfideMinerals.In:FlotationofSulfideMinerals[M].Elsevier:Forssberg,K.S.E.(Editor),1985.259~285.
[8] JiangHao,HuYuehua,XuJing.Electrochemicalcharacteristicsofcoupleelectrodeofgalena pyriteindifferentsolution[J].Trans.NonferrousMet.Soc.,2000,10:87~89(inchinese).
[9] QinWenqing.Electrochemicalbehaviorsofsulfidemineralparticlesandpotential controlledfoltationtechnology[D].Changsha:DoctorThesisofCentralSouthUniversity,1997,32.
[10] ShiMeilen.PrincipleandApplicationofACImpedanceSpectra[M].Beijing:Nation defenseIndustrialPress,2001.307~348.
[11] VaughanDJ,BeckerU,wrightK.Sulfidemineralsurfaces:theoryandexperiment[J].InternationalJournalofMineralProcessing,1997,51:1~14.
[12] WangDianzuo.NewDevelopmentinFoltationTheory[M].Beijing:SciencePress,1992.
[13] WangDianzuo,HuYuehua.SolutionChemistryofFoltation[M].Changsha:HunanScienceandTechnologyPress,1989.274~330.
[14] WoodR.ChemisorptionofThiolsonMetalSulfides.In:Bockris,J.O.M.,Conway,B.E.,White,R.E.(Eds.)ModernAspectsofElectrochemistry,Vol.29[M].NewYonk:PlenumPress,1997.401~453.
[15] WuYinxun.TheTechnologyofACImpedance.In:CorrosiveTrailMethodsandAnticorrosiveTestTechnology[M].Beijing:ChemicalIndustryPress,1995.
[16] YangHuaiyu,ChenJiajian,CaoChulan.StudyoncorrosionandinhibitionmechanisminH2Saqueoussolution[J].JournalofChineseSocietyforCorrosionandProtection,2000,20(1):8~14.
[17] Zhouzhongbei,ChenYongyan(Eds.).BasicTheoryandPrinciplesofElectrodeProcessKinetics[M].Wuhan:WuhanUniversityPress,1987.252~307.