•  
  •  
 

Abstract

The interactions of jamesonite with diethyl dithiocarbamate (DDTC) were studied by AC impedance measurement and cyclic voltammetry. Several electrode processes under different potential conditions were observed. There mainly is the absorption of hydrophobic DDTC. PbD_2, S~0 etc on the surface of jamesonite mineral from -178 mV to 472 mV (vs. SHE) and the interfacial capacitance also is small. When the electrode potential is over 472 mV, the surface of jamesonite mineral is of hydrophilicity due to the fact that hydrophobic PbD_2,S~0 etc are oxidized into hydrophilic products such as Pb~(2+), SO_3~(2-) ,SO_4~(2-), PbSO_4. So it was deduced that the potential range of jamesonite flotation using diethyl dithiocarbmate as a collector is from -178 mV to 472 mV, and its optimum potential range is between 122 mV and 222 mv due to the passive action by the hydrophobic species.

Keywords

Jamesonite, Flotation, Electrochemisty

Publication Date

2004-05-28

Online Available Date

2004-05-28

Revised Date

2004-05-28

Received Date

2004-05-28

References

[1] BuckleyAN,WoodsR.Underpotentialdepositionofdithiophosphateonchalcocite[J].J.Electroanal.Chem.,1993,357:387~450.
[2] BuckleyAN,WoodsR.IdentifyingchemisoptionintheinteractionofthiocollectorswithsulfidemineralsbyXPS:adsorptionofxanthateonsilverandsilvesulfide[J].ColloidsSurf.,1995,104:295~305.
[3] BuckleyAN,WoodsR.Chemisorptionthethermodynamicallyfavoredprocessintheinteractionofthiocollectorswithsulfideminerals[J].Int.J.Miner.Process,1997,51:15~26.
[4] ChengYufeng,DuYuanlaong,CaoChunan.Inhibitionandadsorption/desorptionofcyclohexylaminephosphateinNa2SO4solution[J].TheJournalofChineseSocietyforCorrosionandProtection,1997,17(2):142~145.
[5] FuerstenauMC,MillerJD,KuhnMC.ChemistryofFlotation[M].NewYork:Am.Inst.Min.Metall.Pet.Eng.,1985.
[6] GuGuo-hua,HuYue hua,QiuGuan zhou,etal.Electrochemistryofgalenainhighalkalineflotation[J].MiningandMetallurgicalEngineering,2002,221(1):52~55.
[7] HamiltonIC,WoodsR.AVoltammetricStrdyoftheSurfaceOxidationofSaulfideMinerals.In:FlotationofSulfideMinerals[M].Elsevier:Forssberg,K.S.E.(Editor),1985.259~285.
[8] JiangHao,HuYuehua,XuJing.Electrochemicalcharacteristicsofcoupleelectrodeofgalena pyriteindifferentsolution[J].Trans.NonferrousMet.Soc.,2000,10:87~89(inchinese).
[9] QinWenqing.Electrochemicalbehaviorsofsulfidemineralparticlesandpotential controlledfoltationtechnology[D].Changsha:DoctorThesisofCentralSouthUniversity,1997,32.
[10] ShiMeilen.PrincipleandApplicationofACImpedanceSpectra[M].Beijing:Nation defenseIndustrialPress,2001.307~348.
[11] VaughanDJ,BeckerU,wrightK.Sulfidemineralsurfaces:theoryandexperiment[J].InternationalJournalofMineralProcessing,1997,51:1~14.
[12] WangDianzuo.NewDevelopmentinFoltationTheory[M].Beijing:SciencePress,1992.
[13] WangDianzuo,HuYuehua.SolutionChemistryofFoltation[M].Changsha:HunanScienceandTechnologyPress,1989.274~330.
[14] WoodR.ChemisorptionofThiolsonMetalSulfides.In:Bockris,J.O.M.,Conway,B.E.,White,R.E.(Eds.)ModernAspectsofElectrochemistry,Vol.29[M].NewYonk:PlenumPress,1997.401~453.
[15] WuYinxun.TheTechnologyofACImpedance.In:CorrosiveTrailMethodsandAnticorrosiveTestTechnology[M].Beijing:ChemicalIndustryPress,1995.
[16] YangHuaiyu,ChenJiajian,CaoChulan.StudyoncorrosionandinhibitionmechanisminH2Saqueoussolution[J].JournalofChineseSocietyforCorrosionandProtection,2000,20(1):8~14.
[17] Zhouzhongbei,ChenYongyan(Eds.).BasicTheoryandPrinciplesofElectrodeProcessKinetics[M].Wuhan:WuhanUniversityPress,1987.252~307.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.