Abstract
The redox proteins (enzymes), such as hemoglobin (Hb), horseradish peroxidase (HRP) and glucose oxidase (GOx) were immobilized on the surface of the carbon nanotube modified with glassy carbon (CNT/GC) electrode, respectively. The experimental results showed that the redox proteins (enzymes) underwent effective and stable direct electron transfer reaction at the surface of CNT/GC electrode with a pair of nearly symmetrical redox peaks in phosphate buffer solution. The formal redox potential, E~(0'), is almost independent on the scan rates, the average value of E~(0') for Hb, HRP and GOx is -0.343±0.001, -0.319±0.002 and -0.456±0.001 V (vs.SCE,pH 6.9), respectively. The dependence of E~(0') on the pH of the buffer solution indicates that the direct electron transfer of Hb and HRP is a one-electron-transfer reaction process coupled with one-proton-transfer, while the GOx is a two-electron-transfer reaction process coupled with two-proton-transfer. The experimental results also demonstrated that the immobilized Hb and HRP retained their bioelectrocatalytic activity to the reduction of H_(2)O_(2), and immobilized GOx can catalyze the oxidation of glucose in the presence of ferrocene monocarboxylic acid. The method presented here can be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.
Keywords
Carbon nanotube, Direct electrochemistry, Hemoglobin, Horseradish peroxidase, Glucose oxidase
Publication Date
2004-05-28
Online Available Date
2004-05-28
Revised Date
2004-05-28
Received Date
2004-05-28
Recommended Citation
Chen-xin CAI.
Direct Electron Transfer of Redox Proteins and Enzymes Promoted by Carbon Nanotube[J]. Journal of Electrochemistry,
2004
,
10(2): 159-167.
DOI: 10.61558/2993-074X.1561
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss2/7
References
[1]FrewJE,HillHAO.Directandindirectelectrontransferbetweenelectrodesandredoxproteins[J].Eur.J.Biochem.,1988,172:261~269.
[2]SantucciR,PicciauA,CampanellaL,etal.Electrochemistryofmetalloproteins[J].Curr.TopElectrochem.,1994,3:313~328.
[3]ArmstrongFA,HillHAO,WaltonNJ.Directelectrochemistryofredoxproteins[J\〗.Acc.Chem.Res.,1998,21:407~413.
[4]GortonL,LindgrenA,LarssonT,etal.Directelectrontransferbetweenheme containingenzymesandelectrodeasbasisforthirdgenerationbiosensors[J].Anal.Chim.Acta.,1999,400:91~108.
[5]Aguey ZinsouKF,BernhardtPV,KapplerU,etal.Directelectrochemistryofabacterialsulfitedehydrogenase[J].J.Am.Chem.Soc.,2003,125:530~535.
[6]ElliottSJ,McElhaneyAE,FengC,etal.Avoltammetricstudyofinterdomainelectrontransferwithinsulfiteoxidase[J].J.Am.Chem.Soc.,2002,124:11612~11613.
[7]IijimaS.Helicalmicrotubulesofgraphiticcarbon[J].Nature,1991,354:56~58.
[8]EbbesenTW,AjayanPM.Large scalesynthesisofcarbonnanotubes[J].Nature,1992,358:220~222.
[9]AjayanPM.Nanotubesfromcarbon[J].Chem.Rev.,1999,99:1787~1799.
[10]DaiH.Carbonnanotubes:opportunitiesandchallenges[J].SurfaceScience,2002,500:218~241.
[11]CAIChen xin,CHENJing,BaoJian chun,etal.Theapplicationsofcarbonnanotubesinanalyticalchemistry[J].ChineseJ.Anal.Chem.,2004,32:381~387.
[12]CHENJing,BaoJian Chun,CAIChen xin.Fabrication,characterizationandelectrocatalysisofanorderedcarbonnanotubeelectrode[J].ChineseJ.Chem.,2003,21:665~669.
[13]CHENJing,CAIChen xin.DirectelectrochemicaloxidationofNADPHatalowpotentialonthecarbonnanotubemodifiedglassycarbonelectrode[J].ChineseJ.Chem.,2004,22:167~171.
[14]CHENJing,BaoJian chun,CAIChen xin,etal.Directelectrochemicaloxidationofdihydronicotiamideadeninedinucleotide(NADH)atanorderedcarbonnanotubeselectrode[J].ChineseChem.Lett.,2003,14:1171~1174.
[15]LuoH,ShiZ,LiN,etal.Incestigationoftheelectrochemicalandelectrocatalyticbehaviorofsingle wallcarbonnanotubefilmonaglassycarbonelectrode[J].Anal.Chem.,2001,73:915~920.
[16]WangZ,LiangQ,WangY,etal.Carbonnanotube intercalatedgraphiteelectrodesforsimultaneousdeterminationofdopamineandserotonininthepresenceofascorbicacid[J].J.Electroanal.Chem.,2003,540:129~134.
[17]LiuP,HuJ.Carbonnanotubepowdermicroelectrodesfornitritedetection[J].SensorsandActuatorsB,2002,84:194~199.
[18]WangJ,LiM,ShiZ,etal.Electrocatalyticoxidationofnorepinephrineataglassycarbonelectrodemodifiedwithsinglewallcarbonnanotubes[J].Electroanalysis,2002,14:225~230.
[19]WangJ,DeoRP,PoulinP,etal.Carbonnanotubefibermicroelectrodes[J\〗.J.Am.Chem.Soc.,2003,125:14706~14707.
[20]WangJ,MusamehM,LinY.SolubilizationofcarbonnanotubesbyNafiontowardthepreparationofamperometricbiosensors[J].J.Am.Chem.Soc.,2003,125:2408~2409.
[21]AzamianBR,DavisJJ,ColemanKS,etal.Bioelectrochemicalsingle walledcarbonnanotubes[J].J.Am.Chem.Soc.,2002,124:12664~12665.
[22]DavisJJ,ColsRJ,HillAJO.Proteinelectrochemistryatcarbonnanotubeselectrodes[J].J.Electroanal.Chem.,1997,440:279~282.
[23]WangJ,LiM,ShiZ,etal.Directelectrochemistryofcytochromecataglassycarbonelectrodemodifiedwithsingle wallcarbonnanotubes[J].Anal.Chem.,2002,74:1993~1997.
[24]RichardC,BalavoineF,SchultzP,etal.Supramolecularself assemblyoflipidderivativesoncarbonnanotubes[J].Science,2003,300:775~778.
[25]MartinCR,DollardKA.EffectofhydrophobicinteractionsontheratesofionicdiffusioninNafionfilmsatelectrodessurface[J].J.Electroanal.Chem.,1983,159:127~135.
[26]YangJ,HuN,RuslingJF.Enhancedelectrontransferforhemoglobininpoly(estersulfonicacid)filmsonpyrolyticgraphiteelectrodes[J].J.Electroanal.Chem.,1999,463:53~62.
[27]SunH,HuN,MaH.Directelectrochemistryofhemoglobininpolyacrylamodehydrogelfilmsonpyrolyticgraphiteelectrodes[J].Electroanalysis,2000,12:1064~1070.
[28]ZhangZ,NassarAEF,LuZ,etal.DirectelectroninjectionfromelectrodestocytochromeP450caminbiomembrane likefilms[J].J.Chem.Soc.,FaradayTrans.,1997,93:1769~1774.
[29]MimicaD,ZagalJH,BediouiF.Electrocatalysisofnitricoxidereductionbyhemoglobinentrappedinsurfactantfilms[J].Electrochem.Commun.,2001,3:435~438.
[30]LavironE.Generalexpressionofthelinearpotentialsweepvoltammograminthecaseofdiffusionlesselectrochemicalsystems[J].J.Electroanal.Chem.,1979,101:19~28.
[31]LiuH,HuN.Hemeprotein glutenfilms:voltammetricstudiesandtheirelectrocatalyticproperties[J].Anal.Chim.Acta,2003,481:91~99.
[32]SunDM,CaiCX,LiXG,etal.Directelectrochemistryandbioelectrocatalysisofhorseradishperoxidaseimmobilizedonactivecarbon[J].J.Electroanal.Chem.,2004,566:415~421.
[33]ChenX,PengX,KongJ,etal.CharacterizationofthedirectelectrontransferandbioelectrocatalysisofhorseradishperoxidaseinDNAfilmatpyrolyticgraphiteelectrode[J].Anal.Chim.Acta,2000,412:89~98.
[34]JiangL,McNeilCJ,CooperJM.Directelectrontransferreactionofglucoseoxidaseimmobilizedataselfassembledmonolayer[J].J.Chem.Soc.,Chem.Commun.,1995,1293~1295.
[35]IannielloRM,LindsayTJ,YacynychAM.Differentialpulsevoltammetricstudyofdirectelectrontransferinglucoseoxidasechemicallymodifiedgraphiteelectrodes[J].Anal.Chem.,1982,54:1098~1101.
[36]HechtHJ,KaliszHM,HendleJ,etal.CrystalstructureofglucoseoxidasefromAspergillusnigerrefinedat2.3resolution[J].J.Mol.Biol.,1993,229:153~172.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons