Abstract
The Layered-structure LiMn_(1-x)Cr_xO_(2 )(x=0,0.15) solid solution has been prepared by the rheological phase method. From the XRD results, undoped LiMnO_(2) crystallized almost entirely in the orthorhombic phase while the structure of LiMn_(0.85)Cr_(0.15)O_(2) belongs to monoclinic phase. TEM investigation shows that the final powder product consists of ultrafine spherical particles which are distributed homogeneously, with the average diameter ranging from 60 to 300nm. The initial discharge capacity of LiMn_(0.85)Cr_(0.15)O_(2) is much higher than that of undoped LiMnO_(2). After 40 cycles, the capacity retention for m-LiMn_(0.85)Cr_(0.15)O_(2 )is 94% at the current rate of 50mA/g under room temperature. The results of electrochemistry tests reflect that the doping of Cr can inhibit the further layer-to-spinel transition. Thus, stable cycling could be achieved between voltage limit of 2.0~4.4 V vs. Li/Li~(+) at room temperature.
Keywords
Lithium-ion batteries, LiMn_(1-x)Cr_(x), Rheological phase method, Cation dopant
Publication Date
2004-08-28
Online Available Date
2004-08-28
Revised Date
2004-08-28
Received Date
2004-08-28
Recommended Citation
Jie XIAO, Hui ZHAN, Yun-hong ZHOU.
Synthesis and Electrochemical Behavior of Layered-structure LiMn_(1-x)Cr_xO_2[J]. Journal of Electrochemistry,
2004
,
10(3): 324-329.
DOI: 10.61558/2993-074X.1582
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss3/12
References
[1] XiaYongyao,ZhouYunhong,YoshioMasaki.Capacityfadingoncyclingof4VLi/LiMn2O4[J].J.Electrochem.Soc.,1997,144:25932600.
[2] ArmstrongAR,BrucePG.SynthesisoflayeredLiMnO2asanelectrodeforrechargeablelithiumbatteries[J].Nature,1996,381:499~500.
[3] TabuchiMitsuharu,AdoKazuaki,KobayashiHironori,etal.SynthesisofLiMnO2withα NaFeO2 typestructurebyamixed alkalinehydrothermalreaction[J].J.Electrochem.Soc.,1998,145:4L49~4L52.
[4] AmmundsenB,DesilverstroJ,GroutsoT,etal.FormationandstructuralpropertiesoflayeredLiMnO2cathodematerials[J].J.Electrochem.Soc.,2000,147:114078~114082.
[5] Reed.J,CederG,VanDerVenA.Layered to spinelphasetransitioninLixMnO2[J].Electrochem.SolidStateLett.,2001,4:6A78~6A81.
[6] MishraSK,CederG.Structuralstabilityoflithiummanganeseoxides[J\〗.AmericanPhys.Soc.,1999,59:96120~96130.
[7] ArmstrongAR,RobertsonAD,GitsendannerR,etal.ThelayeredintercalationcompoundsLi(Mn1 yCoy)O2:positiveelectrodematerialsforlithium ionbatteries[J].J.SolidStateChem.,1999,145:549~556.
[8] GuoZP,ZhongS,WangGX,etal.Synthesisoflayered structureLiMn1-xCrxO2bythepechinimethodandcharacterizationasacathodeforrechargeableLi/LiMnO2cells[J].J.Electrochem.Soc.,2002,149:6A792~6A795.
[9] JangY Il,HuangBiying,ChiangY M,etal.StabilizationofLiMnO2intheα NaFeO2structuraltypebyLiAlO2addition[J].Electrochem.andSolidStateLett.,1998,1:113~116.
[10]QiangWu,XueliLi,ManmingYan,etal.Electrochemicalpropertiesofsubmicro sizedlayeredLiNi0.5Mn0.5O2[J].ElectrochemistryCommunications,2003,5:878~882.
[11] ZhonghuaLu,J.R..DahnTheeffectofCosubstitutionforNionthestructureandelectrochemicalbehaviorofT2andO2structureLi2/3[CoxNi1/3-xMn2/3]O2[J].J.Electrochem.Soc.,2001,148(3)A237~A240.
[12] SunJ,YuanL,ZhangK,etal.Synthesisandthermaldecompositionofzincphthalate[J].ThermochimicaActa,2000,343:105~109.
[13] SunJ,XieW,YuanL,etal.PreparationandluminescencepropertiesofTb3+ dopedZincsalicylates[J].MaterialsScience&EngineeringB,1999,B64:157~160.
[14] HuangF,ZhanH,ZhouY.Studiesofnano sizedCo3O4asanodematerialsforlithium ionbatteries[J].ChineseJournalofChemistry,2003,21:1275~1279
[15] XiaoJ,ZhanH,ZhouY.SynthesisofLayered StructureLiMn1-xCrxO2forLithium ionBatteriesbytheRheologicalPhaseMethod[J].Mater.Lett.,2004,58(13~14):1620~1624.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons