Abstract
Two local electrochemical reactive interfaces are established using two strips of Nafion~ membrane separated each other, which are in contact with different surface regions of the same metal-sheet working electrode. One potentiostatis used to control thepotentialof one electrochemical reactive interface to generate adsorbed surface speciesand the other potentiostatto hold the potential of the second interface as a detector of the intermediate. The adsorbed surface species driven by the difference in surface concentration diffuses alongthe surface of the metal-sheet between both local electrochemical interfaces and can be detected at the second interface when they achieveover there.The surface diffusion coefficient of the oxygen-containing surface species on Pt was measured, then the synergisticcatalysis was studied using a simplified model Pt-Ru electrode and the spillover of OH_(ads)from the surface of Pt to the surface of Ru was not found in the experimental potential region. This would be explained asthat the realization of synergistic effect is due to spillover of the toxic adsorbed intermediate CO_(ads)on Pt to the surface of Ru and CO_(ads) is oxidized into CO_(2 )by the oxygen-containing surface species over there.
Keywords
Adsorbed intermediate, Surface diffusion, Spillover, Pt-Ru electrode, Electrocatalysis
Publication Date
2004-08-28
Online Available Date
2004-08-28
Revised Date
2004-08-28
Received Date
2004-08-28
Recommended Citation
Lei SU, Bing-liang WU.
ADual-cellTechnique and its Application in Electrocatalytic Study of Pt-Ru Metals[J]. Journal of Electrochemistry,
2004
,
10(3): 287-292.
DOI: 10.61558/2993-074X.1576
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss3/6
References
[1] KapoorA,YangRT,WongC.Surfacediffusion[J].Catal.Rev.,1989,31:129.
[2] ConnerWC,FalconerJL.Spilloverinheterogeneouscatalysis[J].Chem.Rev.,1995,95:759.
[3] TuWY,LiuWJ,ChaCS,etal.Studyofthepowder/membraneinterfacebyusinthemicroelectrodetechniqueI.ThePt black/Nafioninterface[J].ElectrochimicaActa,1998,43:3731.
[4] PaulusUA,VeziridisZ.SchnyderB,etal.Fundamentalinvestigationofcatalysisutilizationattheelectrode/solidpolymerelectolyetinterface.PartI.Developmentofamodelsystem[J].J.ElectroanalyticalChemistry,2003,541:77.
[5] LiuWJ,WuBL,ChaCS.DeterminationofsurfacediffusioncoefficientsofhydrogenadatomandsurfaceOHradicalonplatinumelectrode[J].J.Russ.ofElectrochem.,2002,36:846.
[6] TienTTsong.AhistoricperspectiveofFIMandSTMstudiesofsurfacediffusion[J].MaterialsScienceandEngineeringA,353(2003)1.
[7] MakCH,BrandJL,DeckertAA.SurfacediffusionofhydrogenonRu(001)studiedusinglaser inducedthermaldesorption[J].Chem.Phys.,1986,85:1676.
[8] CandauJFC,ConnerWC.Thespilloverofhydrogenontosilican[J].J.Catalysis,1987,106:378.
[9] AngersteinKozlowskaH,ConwayBE,SharpWBA.Therealconditionofelectrochemicallyoxidizedplatinumsurface.PartI.Resolutionofcomponentprocesses[J].J.Electroanal.Chem.,1973,43:9.
[10] FrelinkT,VisscherW,CoxAP.EllipsometryandDEMSstudyoftheelectrooxidationofmethanolatPtandRuandSn promotedPt[J].Electrochim.Acta,1995,40:1537.
[11] HideakiKita,ShenYe,YunzhiGao.MasstransfereffectinhydrogenevolutionreactiononPtsinglecrystalinacidsolution[J].J.Electroanal.Chem.,1992,334:351.
[12] KwasniewskiVJ,SchmidtLD.SurfacediffusionofcarbonmonoxideonPt(111)[J].SurfaceScience,1992,274:329.
[13] DayJB,VuissozPA,OldfieldE,etal.Nuclearmagneticresonancespectroscopestudyoftheelectrochemicaloxidationproductofmethanolonplatinum[J].J.Amer.Chem.Soc.,1996,118:13046.
[14] HubertAGasteiger,NenadMarkovic,PhilipNRoss,etal.COelectrooxidationonwell characterizedPt Rualloys[J].J.Phys.Chem.,1994,98:617.