Abstract
The air electrodes with different mass ratio of Pt/active carbon or carbon nanotube as catalyst layer material have been prepared. The electrocatalytic performances for oxygen reduction were evaluated by means of polarization curve and electrochemical impedance spectroscopy (EIS). The results disclosed that carbon nanotubes dealt with nitric acid in the catalyst layer had been improved obviously on the electrocatalytic activity. After the surface of carbon nanotube was oxygenated and aggraded with platinum, the catalyst had obviously effects on the electrocatalytic activity. The air electrode with the mass ratio of active carbon to Pt/carbon nanotube in 4∶1 showed better electrocatalytic activity, e.g., the output current density reached 600~700 mA cm~(-2) when the overpotential was 500~600 mV. The EIS showed that the addition of Pt/carbon nanotube in the catalyst decreased greatly ohmic and kinetic impedance and thereby produced greater enhancement in performances.
Keywords
Carbon nanotube, Air electrode, Oxygen reduction, EIS
Publication Date
2004-11-28
Online Available Date
2004-11-28
Revised Date
2004-11-28
Received Date
2004-11-28
Recommended Citation
Feng-ming ZHAO, Chun-an MA.
Electrocatalytic Performances of Carbon Nanotube Air Electrode for Oxygen Reduction[J]. Journal of Electrochemistry,
2004
,
10(4): 384-390.
DOI: 10.61558/2993-074X.1590
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol10/iss4/3
References
[1] HiranoS,KinJ,SrinivasanS.Highperformanceprotonexchangemembranefuelcellswithsputter depositedPtlayerelectrodes[J].ElectrochimicaActa.1997,42(10):1587.
[2] VchidaM,AoyamaY,EdaV,etal.InvestigationofthemicrostructureinthecatalystlayerandeffectsofbothperfluorosulfonatelonomerandPTFE loadedcarbononthecatalystlayerofpolymerelectrolytefuelcells[J].J.Electrochem.Soc.,1995,142(12):4143.
[3] VchidaM,FukuakaY,SugawaraY,etal.Improvedpreparationprocessofvery low platinum loadingelectrodesforpolymerelectrolytefuelcells[J].J.Electrochem.Soc.1998,145(1):3708.
[4] WilsonMS,GottesfeldS.Thinfilmcatalystlayersforpolymerelectrolytefuelcellelectrodes[J].J.Appl.Electrochem.,1992,22:1.
[5] HuangCD,ShanZQ,LiXT,etal.EffectofthepreparationconditiononplatinumsizeofPt/Ccatalyst[J].Chin.J.Appl.Chem.2000,17(6):645.
[6] KabbabiA,GloaguenF,AnddfatoF,etal.ParticlesizeeffectforoxygenreductionandmethanoloxidationonPt/Cinsideaprotonexchangemembrane[J\〗.J.Electroanal.Chem.,1994,373:251.
[7] ChaSY,LeeWM.PerformanceofprotonexchangemembranefuelcellelectrodespreparedbydirectdepositionofUltrathinplatinumonthemembranesurface[J].J.Electrochem.Soc.,1999,146(11):4055.
[8] HiranoS,KimJ,SrinivasanS.Effectofsputteredfilmofplatinumonlowplatinumloadingelectrodesonelectrodekineticsofoxygenreductioninprotonexchangemembranefuelcells[J].ElectrochimicaActa.1993,38(12):1661.
[9] FischerA,JindraJ,WendtH.PorosityandcatalystutilizationofthinlayercathodesinairoperatedPEM fuelcells[J].J.Appl.Electrochem.,1998,28:277.
[10] JiaNY,MartinRB,QiZG,etal.Modificationofcarbonsupportedcatalyststoimproveperformanceingasdiffusionelectrodes[J].Electrochimica.Acta.2001,46:2863.
[11] TamizhmanlG,CapuanoGA.Improvedelectrocatalyticoxygenreductionperformanceofplatinumternaryalloy oxideinsolid polymer electrolytefuelcells[J].J.Electrochem.Soc.,1994,14(4):968~975
[12] LiCZ,WenGY,ZhangY,etal.ElectrocatalyticactivityofPtCr/C Nafionmembraneoxygenelectrodes[J].Chin.J.PowerSources.1998,22(5):201~203.
[13] SongJM,ChaSY,LeeWM.OptimalcompositionofpolymerelectrolytefuelcellelectrodesdeterminedbytheACimpedancemethod[J].J.PowerSources,2001,94:78.
[14] BrittoP.J,SanthanamKSV,RubioA,etal.Improvedchargetransferatcarbonnanotubeelectrodes[J].AdvMater,1999,11(2):154.
[15] IijimaS.Materialscience:Thesmallestcarbonnanotube[J].Nature,1991,354:56.
[16] FanSS,ChaplineMG,FranklinNR,etal.Self orientedregulararraysofcarbonnanotubesandtheirfieldemissionproperties[J].Science,1999,283(22):512.
[17] HuangH,ZhangWK,ZhaoFM,etal.Electrocatalyticperformancesofcarbonnanotubeairelectrodeforoxygenreduction[J].Chin.J.Appl.Chem.2002,19(8):760.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons