•  
  •  
 

Corresponding Author

Bo HUANG(huangbo2k@hotmail.com)

Abstract

A Ni-scandia-stabilized zirconia(Ni-ScSZ) cermet anode modified by coating with nano-sized gadolinium-doped ceria(GDC,Gd0.2Ce0.8O2) was prepared using a simple combustion process for the solid oxide fuel cell(SOFC) running on methane fuel.X-ray diffraction(XRD) and scanning electron microscopy(SEM) indicated that the surface of Ni-ScSZ was coated by nano-sized GDC particles(<100nm).Single cell testing showed that the 2.0%(by mass) GDC-coated Ni-ScSZ anode had better performance.The highest power densities of the cell with this anode were 825 and 848mW/cm2 at 850℃ in humidified hydrogen and methane,respectively,whereas the corresponding values were 584 and 586mW/cm2 for the cell with Ni-ScSZ anode.Electrochemical impedance spectra(EIS) illustrated that the cell with Ni-ScSZ anode exhibited far greater impedances than the cell with 2.0%(by mass) GDC-coated Ni-ScSZ anode.Then the short-term stability for the cells with the Ni-ScSZ and 2.0%(by mass) GDC-coated Ni-ScSZ anodes in 97%CH4/3%H2O at 700℃ was checked over a relative long period of operation.No significant degradation in performance has been observed after 84 h of cell testing when 2.0%(by mass) GDC-coated Ni-ScSZ anode was exposed to 97%CH4/3%H2O at 700 ℃.Very little carbon was detected on the anodes,suggesting that carbon deposition was limited during cell operation.

Keywords

solid oxide fuel cell(SOFC), methane oxidation, anode, carbon deposition, electrochemical impedance spectroscopy

Publication Date

2007-02-28

Online Available Date

2007-02-28

Revised Date

2007-02-28

Received Date

2007-02-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.