Abstract
We synthesized gold-platinum electrocatalysts supported on multi-walled carbon nanotubes(MWCNTs) with high utilization by a simple one-step method.A high Pt loading series of bimetallic AuPt/MWCNTs catalysts were prepared by the improved ethylene glycol reduction method,and then were compared in terms of the electrocatalytic activity for methanol electro-oxidation using cyclic voltammetry(CV) and chronoamperometry in alkaline solutions.The structure of AuPt/MWCNTs was characterized by the transmission electron microscopy(TEM),X-ray diffraction(XRD) and energy-dispersive X-ray spectroscopy(EDS).The results showed that the AuPt/MWCNTs catalysts had high Pt utilization,uniform AuPt nanoparticles size and good electrocatalytic activity for methanol electro-oxidation.The effect of Au/Pt mass ratio on electrocatalytic activity was also investigated.The highest peak current and lowest onset potential for methanol electro-oxidation appeared at the Au/Pt/MWCNTS mass ratio of 10∶8∶32.
Keywords
methanol electro-oxidation, ethylene glycol reduction, AuPt nanoparticles, multi-walled carbon nanotubes, direct methanol fuel cell
Publication Date
2009-02-28
Online Available Date
2009-02-28
Revised Date
2009-02-28
Received Date
2009-02-28
Recommended Citation
Xun GUO, Dao-jun GUO, Xin-ping QIU, Li-quan CHEN, Wen-tao ZHU.
High Utilization AuPt Nanoparticles Supported on MWCNTS for Methanol Electro-oxidation in Alkaline Medium[J]. Journal of Electrochemistry,
2009
,
15(1): 38-42.
DOI: 10.61558/2993-074X.1951
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol15/iss1/10
References
[1]Hamnett A.Mechanism and electrocatalysis in the di-rect methanol fuel cell[J].Catal Today,1997,38(4):445-457.
[2]McNicol B D,Rand D A J,Williams K R.Directmethanol-air fuel cells for road transportation[J].JPower Sources,1999,83(1~2):15-31.
[3]Arico A S,Srinivasan S,Antonucci V.DMFCs:fromfundamental aspects to technology development[J].Fuel Cells,2001,1(2):133-161.
[4]Jarvi T D,Sriramulu S,Stuve E M.Potential depend-ence of the yield of carbon dioxide from electrocatalyticoxidation of methanol on platinum(100)[J].J PhysChem,1997,101(19):3646-3652.
[5]Redding E,Sapienza A,Smotkin E S.Combinatorialelectrochemistry:A highly parallel,optical screeningmethod for discovery of better electrocatalysts[J].Sci-ence,1998,280(5370):1735-1737.
[6]Ren X,Zelenay S,Thomas S,et al.Recent advancesin direct methanol fuel cells at Los Alamos National La-boratory[J].J Power Sources,2000,86(1~2):111-116.
[7]Gurau B,Smotkin E S.Methanol crossover in directmethanol fuel cells:a link between power and energydensity[J].J Power Sources,2002,112(2):339-352.
[8]Beden B,Lamy C,Bewick A,et al.Electrosorption ofmethanol on a platinum electrode.IR spectroscopic evi-dence for adsorbed co species[J].J ElectroanalChem,1981,121:343-347.
[9]Seiler T,Savinova E R,Frtiedrich K A,et al.Poison-ing of PtRu/C catalysts in the anode of a direct metha-nol fuel cell:a DEMS study[J].Electrochim Acta,2004,49(22~23):3927-3936.
[10]Paulus U A,Endruschat U,Feldmeyer G J,et al.New PtRu alloy colloids as precursors for fuel cell cat-alysts[J].J Catal,2000,195(2):383-393.
[11]Lu G Q,Liu F Q,Wang C Y.Water transport throughNafion 112 membrane in DMFCs[J].ElectrochemSolid-State Lett,2005,8(1):A1-A4.
[12]Liu R X,Smotkin E S.Array membrane electrode as-semblies for high throughput screening of direct metha-nol fuel cell anode catalysts[J].J Electroanal Chem,2002,535(1~2):49-55.
[13]Niwa M,Igarashi J.Role of the solid acidity on theMoO3loaded on SnO2in the methanol oxidation intoformaldehyde[J].Catal Today,1999,52(1):71-81.
[14]Gasteiger H A,Markovic N,Ross P N,et al.Effectof the supporting electrolyte and beam diameter onprobe beam deflection experiments[J].J PhysChem,1993,97(1~2):55-69.
[15]Haruta M,Date M.Advances in the catalysis of Aunanoparticles[J].Appl Catal A,2001,222(1~2):427-437.
[16]Valden M,Lai X,Goodman D W.Onset of catalyticactivity of gold clusters on titania with the appearanceof nonmetallic properties[J].Science,1998,281(5383):1647-1650.
[17]Xu C X,Su J X,Xu X H,et al.Lowtemperature COoxidation over unsupported nanoporous gold[J].JAm Chem Soc,2007,129(1):42-43.
[18]Santhosh P,Gopalan A,Lee K P.Gold nanoparticlesdispersed polyaniline grafted multiwall carbon nano-tubes as newer electrocatalysts:Preparation and per-formances for methanol oxidation[J].J Catal,2006,238(1):177-185.
[19]Guo S J,Fang Y X,Dong S J,et al.High-efficiencyand low-cost hybrid nanomaterial as enhancing electro-catalyst:Spongelike AWN core/shell nanomaterialwith hollow cavity[J].J Phys Chem C,2007,111(45):17104-17109.
[20]Park I S,Lee K S,Cho Y H,et al.Methanol electro-oxidation on carbon-supported and Pt-modified Aunanoparticles[J].Catal Today,2008,132(1~4):127-131.
[21]Luo J,Njoki P N,Lin Y,et al.Characterization ofcarbon-supported AuPt nanoparticles for electrocatalyt-ic methanol oxidation reaction[J].Langmuir,2006,22(6):2892-2898.
[22]Zeng J H,Yang J,Lee J Y,et al.Preparation of car-bon-supported core-shell Au-Pt nanoparticles for meth-anol oxidation reaction:The promotional effect of theAu core[J].J Phys Chem B,2006,110(48):24606-24611.
[23]Kristian N,Wang X.Pt-shell-Au-core/C electrocata-lyst with a controlled shell thickness and improved Ptutilization for fuel cell reactions[J].ElectrochemCommun,2008,10(1):12-15.
[24]Cameron D,Holliday R,Thompson D.Gold's futurerole in fuel cell systems[J].J Power Sources,2003,118(1~2):298-303.
[25]Li W Z,Liang C H,Zhou W J,et al.Preparation andcharacterization of multiwalled carbon nanotube-sup-ported platinum for cathode catalysts of direct methanolfuel cells[J].J Phys Chem B,2003,107(26):6292-6299.
[26]Luo J,Maye M M,Petkov V,et al.Phase propertiesof carbon-supported gold-platinum nanoparticles withdifferent bimetallic compositions[J].Chem Mater,2005,17(12):3086-3091.
[27]Wu M L,Chen D H,Huang TC.Preparation of Au/Pt bimetallic nanoparticles in water-in-oil microemul-sions[J].Chem Mater,2001,13(2):599-606.
[28]Kabbabi A,Faure R,Durand R,et al.In situ FTIRSstudy of the electrocatalytic oxidation of carbon monox-ide and methanol at platinum-ruthenium bulk alloy e-lectrodes[J].J Electroanal Chem,1998,444(1):41-53.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons