Abstract
The electrochemical behaviors and adsorption properties of single-walled carbon nanotubes such as SWNT,SWNT-COOH,and SWNT-OH and multi-walled carbon nanotubes including MWNT,MWNT-COOH,and MWNT-OH modified at a graphite electrode have been investigated by using [Fe(CN)6]3-anion and [Co(phen)3]3+ cation.It was shown that shows good redox reversibility of [Fe(CN)6]3-/4-reactions on the existed carbon nanotubes(CNT) modified electrode.Based on the strong adsorptive property of [Co(phen)3]3+ on the CNT surface,the [Co(phen)3]3+/CNT modified graphite electrode can be obtained by progressive potential sweeping and developed to monitor quantitatively 6-mercaptopurine(6-MP).The adsorption capacity of [Co(phen)3]3+ on the multi-walled carbon nanotubes is higher than that of single-walled carbon nanotubes.For the carbon nanotubes with carboxylic or hydroxyl functionalized groups(CNT-COOH or CNT-OH),the adsorbed intensity was weakened,where the adsorptive intensity on the CNT-COOH surface was better.In addition,there was an obvious interaction between [Co(phen)3]3+ and 6-MP.6-MP was detected by monitoring the reductive current values of the [Co(phen)3]3+-6-MP complex generated by the interaction of [Co(phen)3]3+ on the CNT modified graphite electrode with 6-MP.
Keywords
carbon nanotubes, 6-mercaptopurine, cobalt(III) complexes, electrochemical properties
Publication Date
2009-02-28
Online Available Date
2009-02-28
Revised Date
2009-02-28
Received Date
2009-02-28
Recommended Citation
Bao-yi LU, Yan-yan LAI, Hong LI.
Electrochemical Properties of Functionalized Carbon Nanotubes and Their Applications in Analysis of 6-mercaptopurine[J]. Journal of Electrochemistry,
2009
,
15(1): 67-73.
DOI: 10.61558/2993-074X.1957
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol15/iss1/16
References
[1]Escobar M,Moreno M S,Candal R J,et al.Synthesisof carbon nanotubes by CVD:effect of acetylene pres-sure on nanotubes characteristics[J].Appl Surf Sci,2007,254(1):251-256.
[2]Hsu H L,Jehng J M,Sung Y,et al.The synthesis,characterization of oxidized multi-walled carbon nano-tubes,and application to surface acoustic wave quartzcrystal gas sensor[J].Mater Chem Phys,2008,109(1):148-155.
[3]Ramesh P,Okazaki T,Sugai T,et al.Purification andcharacterization of double-wall carbon nanotubes synthe-sized by catalytic chemical vapor deposition on meso-porous silica[J].Chem Phys Lett,2004,84(1):140-145.
[4]Murakami Y,Miyauchi Y,Chiashi S,et al.Character-ization of single-walled carbon nanotubes catalyticallysynthesized from alcohol[J].Chem Phys Lett,2003,374(1-2):53-58.
[5]Zou HL(邹红玲),Yang Y L(杨延莲),Wu B(武斌),et al.Purification and characterization of singlewalled carbon nanotubes synthesized by chemical vapordeposition[J].Acta Phys-Chim Sin,2002,18(5):409-413.
[6]Becher M,Haluska M,Hirscher M,et al.Hydrogenstorage in carbon nanotubes[J].CR Phys,2003,4(9):1055-1062.
[7]Frackowiak E,Gautier S,Gaucher H,et al.Electro-chemical storage of lithium in multiwalled carbon nano-tubes[J].Carbon,1999,37(1):61-69.
[8]Ye X Y(叶晓燕),Wang Y Z(王艳芝),Song H Y(宋海燕),et al.A study on supercapacitor based onaligned carbon nanotubes[J].Electrochemistry,2008,14(1):24-29.
[9]Yadegari H,Jabbari A,Heli H,et al.Electrocatalyticoxidation of deferiprone and its determination on a car-bon nanotube-modified glassy carbon electrode[J].Electrochim Acta,2008,53(6):2907-2916.
[10]Okuno J,Maehashi K,Matsumoto K,et al.Single-walled carbon nanotube-arrayed microelectrode chip forelectrochemical analysis[J].Electrochem Commun,2007,9(1):13-18.
[11]Luo HX,Guo Z X,He N.Reversible electrochemis-try of DNA on multi-walled carbon nanotube modifiedelectrode[J].Chinese Chem Lett,2007,18(7):861-864.
[12]Salimi A,Miranzadeh L,Hallaj R.Amperometric andvoltammetric detection of hydrazine using glassy carbonelectrodes modified with carbon nanotubes and catecholderivatives[J].Talanta,2008,75(1):147-156.
[13]Salimi A,Kavosi B,Babaei A,et al.Electrosorptionof Os(III)-complex at single-wall carbon nanotubesimmobilized on a glassy carbon electrode:applicationto nanomolar detection of bromate,periodate and io-date[J].Anal Chim Acta,2008,618(1):43-53.
[14]Chen J,Bao J,Cai C,et al.Electrocatalytic oxidationof NADH at an ordered carbon nanotubes modifiedglassy carbon electrode[J].Anal Chim Acta,2004,516(1-2):29-34.
[15]Luo HX(罗红霞),Shi Z J(施祖进),Li N Q(李南强),et al.Investigation on the electrochemical andelectrocatalytic behavior of chemically modified elec-trode of single wall carbon nanotube functionalized withcarboxylic acid group[J].Chem J Chin Univer,2000,21(9):1372-1374.
[16]Tao Y,Lin Z J,Chen X M,et al.Functionalized mul-tiwall carbon nanotubes combined with bis(2,2′-bipyr-idine)-5-amino-1,10-phenanthroline ruthenium(II)asan electrochemiluminescence sensor[J].Sensor Ac-tuat B-Chem,2008,129(2):758-763.
[17]Cao X N,Lin L,Zhou Y Y,et al.Study of the inter-action of 6-mercaptopurine with protein by microdialys-is coupled with LC and electrochemical detection basedon functionalized multi-wall carbon nanotubes modifiedelectrode[J].J Pharmaceut Biomed,2003,32(3):505-512.
[18]Shen X C,Jiang L F,Liang H,et al.Determinationof 6-mercaptopurine based on the fluorescence en-hancement of Au nanoparticles[J].Talanta,2006,69(2):456-462.
[19]Yang H,Liu Y,Liu Z,et al.Raman mapping and insitu SERS spectroelectrochemical studies of 6-mercap-topurine SAMs on the gold electrode[J].J PhysChem B,2005,109(7):2739-2744.
[20]Maduen~o R,Sevilla J M,Pineda T,et al.A voltam-metric study of 6-mercaptopurine monolayers on poly-crystalline gold electrodes[J].J Electroanal Chem,2001,506(2):92-98.
[21]Sevilla J M,Pineda T,Madue o R,et al.Character-ization of 6-mercaptopurine monolayers on Hg surfaces[J].J Electroanal Chem,1998,442:107-112.
[22]Grassini-Strazza G,Sinibaldi M.Preparation and char-acterization of cobalt(III)bipyridine and phenanthro-line complexes[J].Inorg Chim Acta,1980,44:295-297.
[23]Zhang J J(张久俊),Lu J T(陆君涛),Cha C S(查全性),et al.In-situ FTIR reflection-absorptionspectroscopic measurements of ferrocyanide ions andthincyanate ions on Pt,Cu electrodes[J].J Instru-mental Analysis,1989,8(6):33-37.
[24]Gu R A(顾仁敖),Yao J L(姚建林),Yuan Y X(袁亚仙),et al.Raman spectroscopic studies ofFe(CN)63-/4-redox process at gold electrode surfaces[J].Chem J Chinese U,1997,18(10):1680-1682.
[25]Wang J,Wang Y,Lv H,et al.Studies of interactionbetween iron(III)and intermediates of synthetic neu-romelanin by means of cyclic voltammetry ofFe(CN)63-and dopamine[J].J Electroanal Chem,2006,594:59-64.
[26]Gao Y N,Li N,Zheng L Q,et al.A cyclic voltam-metric technique for the detection of micro-regions ofbmimPF(6)/Tween 20/H2O microemulsions and theirperformance characterization by UV-Vis spectroscopy[J].Green Chem,2006,8,43-49.
[27]Ozoemena K I,Pillay J,Nyokong T.Preferential elec-trosorption of cobalt(II)tetra-aminophthalocyanine atsingle-wall carbon nanotubes immobilized on a basalplane pyrolytic graphite electrode[J].ElectrochemCommun,2006,8(8):1391-1396.
[28]Bard A J,Faulkner L R.Electrochemical methods:fundamentals and applications[M].New York:JohnWiley and Sons,1980,213-546.
[29]Zhou C F,Du X S,Li H.Studies of interactions a-mong cobalt(III)polypyridyl complexes,6-mercapto-purine and DNA[J].Bioelectrochemistry,2007,70:446-451.
Included in
Analytical Chemistry Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons