•  
  •  
 

Abstract

In this study,amorphous Fe78Si13B9 and Fe73.5Si13.5B9Nb3Cu1 ribbons were prepared by the chill block melt-spinning process and nanocrystalline Fe73.5Si13.5B9Nb3Cu1 ribbons were obtained by annealing. The amorphous ribbons and their crystallization processes were identified by differential scanning calorimeter (DSC) and X-ray diffraction (XRD). A comparative study of the electrochemical corrosion behaviors of Fe78Si13B9 and Fe73.5Si13.5B9Nb3Cu1 amorphous and nanocrystallized alloys was performed by linear polarization method and electrochemical impedance spectroscopy (EIS) in 1mol/L NaOH solutions. The photographs of the samples after potentiodynamic polarization were observed by SEM. The influence of heat treatment on the alloys structure and corrosion resistance in 1mol/L NaOH solutions was investigated. The results show that the crystallization of amorphous ribbons occurs in two steps,nanocrystalline alloys have a higher corrosion resistance than amorphous alloys,and the corrosion resistances of amorphous and nanocrystalline alloys increase as thermal treatment temperature rises.

Keywords

amorphous, nanocrystalline, crystallization behavior, corrosion resistance, diffusion path

Publication Date

2009-08-28

Online Available Date

2009-08-28

Revised Date

2009-08-28

Received Date

2009-08-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.