•  
  •  
 

Corresponding Author

Z Zhang Jin;
Jing-hong LI

Abstract

Self-organized anodic anatase TiO2nanowire arrays doped with nitrogen have been successfully fabri-cated and their photoelectrochemical(PEC) properties have been characterized and found to be substantially im-proved compared to undoped nanowires or commercial P25 nanoparticles.Photocurrent measured with monochro-matic incident light showed that the incident photon-to-current efficiency(IPCE,%) values of nanowire arrayelectrodes with or without N-doping were obviously higher than that of commercial P25 nanoparticle electrodes,and nitrogen-doped TiO2nanowire arrays(NTNA) had noticeable absorption in the visible region.The NTNAelectrodes showed the highest photocurrent density and power conversion efficiency under 100 mW/cm2visiblelight illumination.A maximumolphotoconversion efficiency of 0.52% was achieved for the NTNA sample at anapplied potential of 0.09 V versus Ag/AgCl(saturated KCl) electrode under visible illumination,much higherthan that of the undoped nanowire and commercial P25 nanoparticle electrodes.These results demonstrate thatNTNA thin films are promising for enhancing the photoresponse and effectively improving PEC performances ofnanostructured TiO2in the visible region for different applications including solar hydrogen generation.

Keywords

nitrogen doped, TiO2nanowire arrays, visible light, photoelectrochemical performances, photoca-talysis

Publication Date

2009-11-28

Online Available Date

2009-11-28

Revised Date

2009-11-28

Received Date

2009-11-28

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.