Abstract
Adsorption and reduction of NO on electrode of Pt nanoparticles in acid solutions were studied by means of cyclic voltammetry(CV) and in-situ FTIR spectroscopy.The results indicated that the reduction of NO is a complicated process including the adsorption of NO on electrode surface.Two types of surface-bonded NO were determined on Pt nanoparticles.The weakly adsorbed NO was reduced between 0.6 V and-0.05 V,which yielded nitrous oxide(N2O) and ammonium(NH+4) as products;while the strongly bonded NO was reduced at more negative potentials between-0.05V and-0.15V,producing only NH4+ species.
Keywords
nanostructured Pt electrode, NO, adsorption and electrocatalytic reduction, cyclic voltammetry, in-situ FTIR spectroscopy
Publication Date
2009-11-28
Online Available Date
2009-11-28
Revised Date
2009-11-28
Received Date
2009-11-28
Recommended Citation
Qian CHENG, Yan-xia JIANG, Dong-mei ZENG, Shi-gang SUN.
Cyclic Voltammetric and in-situ FTIR Spectroscopic Studies of Adsorption and Reduction of NO on Electrode of Pt Nanoparticles[J]. Journal of Electrochemistry,
2009
,
15(4): 392-396.
DOI: 10.61558/2993-074X.2014
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol15/iss4/6
References
[1]Nakata K,Kayama Y,Shimazu K,et al.Surface-en-hanced infrared absorption spectroscopic studies of ad-sorbed nitrate,nitric oxide,and related compounds 2:nitrate ion adsorption at a platinum electrode[J].Lang-muir,2008,24:4358.
[2]Taguchi S,Feliu J M.Kinetic study of nitrate reductionon Pt(110)electrode in perchloric acid solution[J].Electrochimica Acta,2008,53:3626.
[3]Dima G E,de Vooys AC A,Koper MTM.Electrocata-lytic reduction of nitrate at lowconcentration on coinageand transition-metal electrodes in acid solutions[J].Journal of Electroanalytical Chemistry,2003,554:15.
[4]De Vooys A C A,Koper M T M,van Santen R A,etal.The role of adsorbates in the electrochemical oxida-tion of ammonia on noble and transition metal electrodes[J].Journal of Electroanalytical Chemistry,2001,506:127.
[5]Rosca V,Beltramo G L,Koper M T M.Hydroxylamineelectrochemistry at polycrystalline platinum in acidicmedia:a voltammetric,DEMS and FTIR study[J].Journal of Electroanalytical Chemistry,2004,566:53.
[6]Alcaide F,Cabot P L,Brillas E.Fuel cells for chemi-cals and energy cogeneration[J].Journal of PowerSources,2006,153:47.
[7]Yu Feng(于锋),Niu Guo-xing(牛国兴),Huang Yao(黄曜),et al.Nickel(Ⅱ)tetrasulfonated phthalocya-nine modified glassy carbon electrode for nitric oxidesensor[J].Journal of Fudan University(Natural Sci-ence),2006,45(03):335-338,343.
[8]Rodes A,Climent V,Orts J M,et al.Nitric oxide ad-sorption at Pt(100)electrode surfaces[J].Electro-chimica Acta,1998,44:1077.
[9]Rosca V,Beltramo G L,Koper M T M.Reduction ofNO adlayers on Pt(110)and Pt(111)in acidic media:evidence for adsorption site-specific reduction[J].Langmuir,2005,21:1448.
[10]Beltramo G L,Koper M T M.Nitric oxide reductionand oxidation on stepped Pt[n(111)_(111)]elec-trodes[J].Langmuir,2003,19:8907.
[11]De Vooys A C A,Koper M T M,van Santen R A,etal.Mechanistic study of the nitric oxide reduction on apolycrystalline platinum electrode[J].ElectrochimicaActa,2001,46:923.
[12]De Vooys A C A,Beltramo G L,van Riet B,et al.Mechanisms of electrochemical reduction and oxidationof nitric oxide[J].Electrochimica Acta,2004,49:1307.
[13]Nakata K,Okubo A,Shimazu K,et al.Surface-en-hanced infrared absorption spectroscopic studies of ad-sorbed nitrate,nitric oxide,and related compounds 1:reduction of adsorbed NO on a platinum[J].Elec-trodeLangmuir,2008,24:4352.
[14]Gmez R,Rodes A,Prez J M,et al.FTIRS and elec-trochemical characterization of the NO adlayer genera-ted by immersion of a Rh(111)electrode in an acidicsolution of nitrite[J].Journal of ElectroanalyticalChemistry,1995,393:123.
[15]Gmez R.Reduction of nitrous oxide on iridium single-crystal electrodes[J].Langmuir,2002,18:4426.
[16]Yan Yan-Gang,Huang Bei-Bei,Wang Jin-Yi,et al.In situ surface-enhanced IR absorption spectroscopy onthe adsorption and reduction of nitric oxide at rutheni-um electrode[J].Journal of Catalysis,2007,249:311.
[17]Corrigan Dennis S,Leung Lam-Wing H,Weaver Mi-chael J.Single potential-alteration surface infraredspectroscopy:examination of adsorbed species in-volved in irreversible electrode reactions[J].Analyti-cal Chemistry,1987,59(18):2252.
[18]Nakamoto K.Infrared and Raman spectra of inorganicand coordination compounds[M].John Wiley&SonsLtd,2002.
Included in
Analytical Chemistry Commons, Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons