Abstract
Rechargeable Li-ion batteries fulfilling high-energy density, high safety, environmental friendliness, and low cost are demanded urgently for energy storage systems. Besides the structure stability arising from the strong Si-O covalent bond, environmental benignancy and low cost from the characteristics of Fe, Mn, Si elementals, orthosilicates (Li2MSiO4) show promising prospect to meet the demand of high-energy density for its two available Li+ per formula unit. Motivated by these significant advantages, Li2MSiO4 have been intensively investigated in the past few years. In the present work, we gave a review on the progress of orthosilicate research including the materials synthesis, structure, electrochemical performances and mechanism study. In addition, some aspects of further research as well as the problems need to be paid attention to were proposed.
Graphical Abstract
Keywords
lithium-ion battery, orthosilicate, structure, electrochemical performance
Publication Date
2011-05-28
Online Available Date
2011-05-06
Revised Date
2011-05-05
Received Date
2011-05-05
Recommended Citation
Dong-ping LV, Lin WANG, Yong YANG.
Research Progress in Orthosilicates as Cathode Materials for Li-ion Batteries[J]. Journal of Electrochemistry,
2011
,
17(2): 161-168.
DOI: 10.61558/2993-074X.2084
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol17/iss2/4
References
[1] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144 (4): 1188-1194.
[2] Armand M. Method for synthesis of carbon-coated redox materials with controlled size: world patent, WO02/27823 [P], 2002.
[3] Arroyo-de Dompablo M E, Armand M, Tarascon J M, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system (M = Fe, Mn, Co, Ni) [J]. Electrochem Commun, 2006, 8 (8): 1292-1298.
[4] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries [J]. Chem Mater, 2010, 22 (3): 587-603.
[5] Nyten A, Abouimrane A, Armand M, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J]. Electrochem Commun, 2005, 7 (2): 156-160.
[6] Dominko R, Bele M, Gaberscek M, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochem Commun, 2006, 8 (2): 217-222.
[7] Nyten A, Kamali S, Haggstrom L, et al. The lithium extraction/insertion mechanism in Li2FeSiO4 [J]. J Mater Chem, 2006, 16 (23): 2266-2272.
[8] Armstrong A R, Lyness C, Menetrier M, et al. Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Combined Diffraction and NMR Study [J]. Chem Mater, 2010, 22 (5): 1892-1900.
[9] Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries [J]. Electrochem Solid State Lett, 2006, 9 (12): A542-A544.
[10] Larsson P, Ahuja R, Nyten A, et al. An ab initio study of the Li-ion battery cathode material Li2FeSiO4 [J]. Electrochem Commun, 2006, 8 (5): 797-800.
[11] Zaghib K, Salah A A, Ravet N, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. J Power Sources, Journal of Power Sources, 2006, 160 (2): 1381-1386.
[12] Dominko R, Bele M, Kokalj A, et al. Li2MnSiO4 as a potential Li-battery cathode material [J]. J Power Sources, 2007, 174 (2): 457-461.
[13] Gong Z L, Li Y X, Yang Y. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries [J]. J Power Sources, 2007, 174 (2): 524-527.
[14] Kokalj A, Dominko R, Mali G, et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4 [J]. Chem Mater, 2007, 19 (15): 3633-3640.
[15] Li Y X, Gong Z L, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries [J]. J Power Sources, 2007, 174 (2): 528-532.
[16] Lyness C, Delobel B, Armstrong A R, et al. The lithium intercalation compound Li2CoSiO4 and its behaviour as a positive electrode for lithium batteries [J]. Chem Commun, 2007 (46): 4890-4892.
[17] Politaev V V, Petrenko A A, Nalbandyan V B, et al. Crystal structure, phase relations and electrochemical properties of monoclinic Li2MnSiO4 [J]. J Solid State Chem, 2007, 180 (3): 1045-1050.
[18] Wu S Q, Zhang J H, Zhu Z Z, et al. Structural and electronic properties of the Li-ion battery cathode material LixCoSiO4 [J]. Current Applied Physics, 2007, 7 (6): 611-616.
[19] Arroyo-DeDompablo M E, Dominko R, Gallardo-Amores J M, et al. On the energetic stability and electrochemistry of Li2MnSiO4 polymorphs [J]. Chem Mater, 2008, 20 (17): 5574-5584.
[20] de Dompablo M, Gallardo-Amores J M, Garcia-Martinez J, et al. Is it possible to prepare olivine-type LiFeSiO4? A joint computational and experimental investigation [J]. Solid State Ionics, 2008, 179 (27-32): 1758-1762.
[21] Dominko R. Li2MSiO4 (M = Fe and/or Mn) cathode materials [J]. J Power Sources, 2008, 184 (2): 462-468.
[22] Gong Z L, Li Y X, He G N, et al. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process [J]. Electrochem Solid State Lett, 2008, 11 (5): A60-A63.
[23] Jayaprakash N, Kalaiselvi N, Periasamy P. A preliminary investigation into the new class of lithium intercalating LiNiSiO4 cathode material [J]. Nanotechnology, 2008, 19 (2): 025603.
[24] Nishimura S I, Hayase S, Kanno R, et al. Structure of Li2FeSiO4 [J]. J Am Chem Soc, 2008, 130 (40): 13212-13213.
[25] Yang Y, Fang H S, Li L P, et al. Synthesis and electrochemical performance of Li2MnSiO4/C composite cathode materials [J]. Rare Met Mater Eng, 2008, 37 (6): 1085-1088.
[26] Belharouak I, Abouimrane A, Amine K. Structural and Electrochemical Characterization of Li2MnSiO4 Cathode Material [J]. J Phys Chem C, 2009, 113 (48): 20733-20737.
[27] Deng C, Zhang S, Yang S Y. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method [J]. J Alloys Comp, 2009, 487 (1-2): L18-L23.
[28] Dominko R, Arcon I, Kodre A, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSiO4 cathode materials [J]. J Power Sources, 2009, 189 (1): 51-58.
[29] Hu G R, Cao Y B, Peng Z D, et al. Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis [J]. Acta Phys Chim Sin, 2009, 25 (5): 1004-1008.
[30] Kuganathan N, Islam M S. Li2MnSiO4 Lithium Battery Material: Atomic-Scale Study of Defects, Lithium Mobility, and Trivalent Dopants [J]. Chem Mater, 2009, 21 (21): 5196-5202.
[31] Li L M, Guo H J, Li X H, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode [J]. J Power Sources, 2009, 189 (1): 45-50.
[32] Zhang S, Deng C, Yang S Y. Preparation of Nano-Li2FeSiO4 as Cathode Material for Lithium-Ion Batteries [J]. Electrochem and Solid State Lett, 2009, 12 (7): A136-A139.
[33] Aravindan V, Karthikeyan K, Ravi S, et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties [J]. J Mater Chem, 2010, 20 (35): 7340-7343.
[34] Boulineau A, Sirisopanaporn C, Dominko R, et al. Polymorphism and structural defects in Li2FeSiO4 [J]. Dalton Trans, 2010, 39 (27): 6310-6316.
[35] Huang X B, Li X, Wang H Y, et al. Synthesis and electrochemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion battery [J]. Electroch Acta, 2010, 55 (24): 7362-7366.
[36] Prakash A S, Rozier P, Dupont L, et al. Electrochemical reactivity of Li2VOSiO4 toward Li [J]. Chem Mater, 2006, 18 (2): 407-412.
[37] Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid State Lett, 2001, 4 (10): A170-A172.
[38] Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes [J]. J Electrochem Soc, 2001, 148 (3): A224-A229.
[39] Peng Z D, Cao Y B, Hu G R, et al. Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries [J]. Chinese Chem Lett, 2009, 20 (8): 1000-1004.
[40] Lv D P, Li Y X, Huang X. K. et al. Stabilized Structure of Li2FexMn1-xSiO4: Facile Synthesis and Improved Electrochemical Performance of Li2Fe0.5Mn0.5SiO4: 4th lithium battery discussion, Arcachon, september 20-25, 2009 [C].
[41] Lv D P, Huang X K, Wen W, et al. The first observation of exceedingone lithium ion extraction from Li2FeSiO4/C composite: 15th international meeting on lithium battery, Montreal, June 27- July 3, 2010 [C].
[42] 杨勇,李益孝,龚正良. 可充锂电池用硅酸锰锂/碳复合正极材料及其制备方法:中国, ZL200610005329.2 [P], 2008
[43] Mali G, Meden A, Dominko R. Li-6 MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs [J]. Chem Commun, 2010, 46 (19): 3306-3308.
[44] West A R. Crystal chemistry of some tetrahedral oxides [J]. Zeitschrift für Kristallographie, 1975, 141 (5-6): 422-436.
[45] Sirisopanaporn C, Boulineau A, Hanzel D, et al. Crystal Structure of a New Polymorph of Li2FeSiO4 [J]. Inorg Chem, 2010, 49 (16): 7446-7451.
[46] 吕东平. 铁基正硅酸盐正极材料及其充放电机理研究 [D]. 厦门:厦门大学, 2011.
[47] Dominko R, Conte D E, Hanzel D, et al. Impact of synthesis conditions on the structure and performance of Li2FeSiO4 [J]. J Power Sources, 2008, 178 (2): 842-847.
[48] Muraliganth T, Stroukoff K R, Manthiram A. Microwave-Solvothermal Synthesis of Nanostructured Li2MSiO4/C (M = Mn and Fe) Cathodes for Lithium-Ion Batteries [J]. Chem Mater, 2010, 22 (20): 5754-5761.
[49] Ghosh P, Mahanty S, Basu R N. Improved Electrochemical Performance of Li2MnSiO4/C Composite Synthesized by Combustion Technique [J]. J Electrocheml Soc, 2009, 156 (8): A677-A681.
[50] Deng C, Zhang S, Fu B L, et al. Characterization of Li2MnSiO4 and Li2FeSiO4 cathode materials synthesized via a citric acid assisted sol-gel method [J]. Mater Chem and Phys, 2010, 120 (1): 14-17.
[51] Liu W G, Xu Y H, Yang R, et al. Effect of Heat-treatment Temperature on the Electrochemical Performances of the Li2MnSiO4/C Composite Prepared through Polyol Process [J]. J Inorg Mater, 2010, 25 (3): 327-331.
[52] Larsson P, Ahuja R, Liivat A, et al. Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations [J]. Comp Mater Sci, 2010, 47 (3): 678-684.
[53] Wu S Q, Zhu Z Z, Yang Y, et al. Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M = Mn, Fe, Co, Ni): A GGA and GGA plus U study [J]. Com Mater Sci, 2009, 44 (4): 1243-1251.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons