•  
  •  
 

Corresponding Author

Jian-wei ZHAO(jwzhao@zjxu.edu.cn)

Abstract

The enhanced electrochemical properties of Ni(OH)2 by the oxidation defected graphene were studied by both experimental method and theoretical calculation. The composite material of nano-Ni(OH)2/graphene was prepared by potentiostatic deposition on the graphene substrate. Observed by TEM, the Ni(OH)2 nanoparticles were well dispersed on the graphene substrate with the diameter of 5.0±0.5 nm. The capacitance of the system measured by the electrochemical test was 1928 F?g-1. As indicated by the theoretical calculations, the composite material becomes conductive since Ni(OH)2 is combined with surface functional groups of the graphene through the strong chemical interaction. The electrons transfer from the graphene substrate to the Ni(OH)2 through the oxidation defects, which makes the Ni(OH)2 nanoparticles negatively charged and results in the unilateral conduction phenomenon.

Graphical Abstract

Keywords

graphene, Ni(OH)2 nanoparticle, electrochemical deposition, supercapacitor

Publication Date

2011-08-28

Online Available Date

2011-06-09

Revised Date

2011-05-24

Received Date

2011-04-18

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.