Abstract
Carbon nanodots are a new class of fluorescent nanoparticles with a carbon-based core, which possess wavelength-tunable luminescence, high photostability, resistance to photobleaching, water-solubility, and ease of bioconjugation. Owing to their attractive merits, carbon nanodots like other carbon nanomaterials such as fullerene, carbon nanotubes and graphene, have attracted much attention. In addition, carbon nanodots can be inexpensively produced by electrochemical methods with simple post-processing under mild conditions. Electrochemical approaches have unique advantages in the analysis of surface structures and luminescence mechanism of materials. In this review, recent advances in electrochemical methods used for the synthesis and luminescence mechanism of fluorescent carbon nanodots were summarized. The possible applications of carbon nanodots in biosensing are also included.
Graphical Abstract
Keywords
carbon nanodots, electrochemical methods, luminescence mechanism, sensing
Publication Date
2011-08-28
Online Available Date
2011-08-05
Revised Date
2011-08-01
Received Date
2011-06-07
Recommended Citation
Bao-ping QI, Yan-min LONG, Lei BAO, Cui LIU, Zhi-ling ZHANG, Dai-wen PANG.
Study on the Fluorescent Carbon Nanodots with Electrochemical Methods[J]. Journal of Electrochemistry,
2011
,
17(3): Article 6.
DOI: 10.61558/2993-074X.2839
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol17/iss3/6
References
[1] Xu Xiaoyou, Ray Robert, Gu Yunlong, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2004, 126(40): 12736-12737.
[2] Chandra Sourov, Das Pradip, Bag Sourav, et al. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles[J]. Nanoscale, 2011, 3(4): 1533-1540.
[3] Zhao Qiaoling, Zhang Zhiling, Pang Daiwen, et al. Facile preparation of low cytotoxicity ?uorescent carbon nanocrystals by electrooxidation of graphite[J]. Chem Commun, 2008, 41: 5116-5118.
[4] Pan Dengyu, Zhang Jingchun, Li Zhen, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots[J]. Adv Mater, 2010, 22(6): 734-738.
[5] Li Haitao, He Xiaodie, Liu Yang, et al. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties[J]. Carbon, 2011, 49(2): 605-609.
[6] Yang Shengtao, Cao li, Sun Yaping, et al. Carbon dots for optical imaging in vivo[J]. J Am Chem Soc, 2009, 131(32): 11308-11309.
[7] Sun Yaping, Yang Shengtao, Wang Xin, et al. Carbon dots as nontoxic and high-performance fluorescence imaging agents[J]. J Phys Chem C, 2009, 113(42): 18110-18114.
[8] Li Qin, Ohulchanskyy Tymish Y, Liu Ruili, et al. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer cells in vitro[J]. J Phys Chem C, 2010, 114(28): 12062-12068.
[9] Baker Sheila N, Baker Gary A. Luminescent carbon nanodots: emergent nanolights[J]. Angew Chem Int Ed, 2010, 49(38), 6726-6744.
[10] Zhou Jigang, Booker Christina, Li Ruying, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs)[J]. J Am Chem Soc, 2007, 129(4): 744-745.
[11] Li Xiangyou, Wang Hongqiang, Shimizu Yoshiki, et al. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents[J]. Chem Commun, 2011, 47(3): 932-934.
[12] Zhu Hui, Wang Xiaolei, Li Yali, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties[J]. Chem Commun, 2009, 34: 5118-5120.
[13] Wang Xiaohui, Qu Konggang, Xu Bailu, et al. Microwave assisted one-step green synthesis of cell-permeable multicolor photoluminescent carbon dots without surface passivation reagents[J]. J Mater Chem, 2011, 21(8): 2445-2450.
[14] Zhang Bing, Liu Chunyan, Liu Yun. A novel one-step approach to synthesize fluorescent carbon nanoparticles[J]. Eur J Inorg Chem, 2010, 28: 4411-4414.
[15] Wang Fu, Pang Shuping, Wang Long, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater, 2010, 22(16): 4528-4530.
[16] Zheng Liyan, Chi Yuwu, Dong Yongqing, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite[J]. J Am Chem Soc, 2009, 131(13): 4564-4565.
[17] Lu Jiong, Yang Jiaxiang, Wang Junzhong, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids[J]. ACS Nano, 2009, 3(8): 2367-2375.
[18] Li Haitao, He Xiaodie, Kang Zhenhui, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angew Chem Int Ed, 2010, 49(26): 4430-4434.
[19] Wang Fu, Xie Zheng, Zhang Hao, et al. Highly luminescent organosilane-functionalized carbon dots[J]. Adv Funct Mater, 2011, 21(6): 1027-1031.
[20] Liu Ruili, Wu Dongqing, Liu Shuhua, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers[J]. Angew Chem Int Ed, 2009, 48(25): 4598-4601.
[21] Sun Yaping, Zhou Bing, Lin Yi, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. J Am Chem Soc, 2006, 128(24): 7756-7757.
[22] Pan Dengyu, Zhang Jingchun, Li Zhen, et al. Blue fluorescent carbon thin films fabricated from dodecylamine-capped carbon nanoparticles[J]. J Mater Chem, 2011, 21(11): 3565-3567.
[23] Sun Yaping, Wang Xin, Lu Fushen, et al. Doped carbon nanoparticles as a new platform for highly photoluminescent dots[J]. J Phys Chem C, 2008, 112(47): 18295-18298.
[24] Anilkumar Parambath, Wang Xin, Cao Li, et al. Toward quantitatively fluorescent carbon-based "quantum dots'' [J]. Nanoscale, 2011, 3(5): 2023-2027.
[25] Hu Shengliang, Niu Kaiyang, Sun Jing, et al. One-step synthesis of ?uorescent carbon nanoparticles by laser irradiation[J]. J Mater Chem, 2009, 19(4): 484-488.
[26] Jie Guifen, Zhang Jingjing, Wang Danchen, et al. Electrochemiluminescence immunosensor based on CdSe nanocomposites[J]. Anal Chem, 2008, 80(11): 4033-4039.
[27] Dennany Lynn, Forster Robert J, Rusling James F, et al. Simultaneous direct electrochemiluminescence and catalytic voltammetry detection of DNA in ultrathin films[J]. J Am Chem Soc, 125(17): 5213-5218.
[28] Dini Danilo. Electrochemiluminescence from organic emitters[J]. Chem Mater, 2005, 17(8): 1933-1945.
[29] Myung Noseung, Ding Zhifeng, Bard Allen J. Electrogenerated chemiluminescence of CdSe nanocrystals[J]. Nano Lett, 2002, 2(11): 1315-1319.
[30] Miao Wujian. Electrogenerated chemiluminescence and its biorelated applications[J]. Chem Rev, 2008, 108(7): 2506-2553.
[31] Ding Zhifeng, Quinn Bernadette M, Bard Allen J, et al. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots[J]. Science, 2002, 296(5571): 1293-1297.
[32] Bae Yoonjung, Myung Noseung, Bard Allen J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles[J]. Nano Lett, 2004, 4(6): 1153-1161.
[33] Myung Noseung, Bae Yoonjung, and Bard Allen J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals[J]. Nano Lett, 2003, 3(8): 1053-1055.
[34] Dong Yongqiang, Zhou Nana, Lin Xiaomei, et al. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon[J]. Chem Mater, 2010, 22(21): 5895-5899.
[35] Zhou Jigang, Booker Christina, Li Ruying, et al. Electrochemistry and electrochemiluminescence study of blue luminescent carbon nanocrystals[J]. Chem Phys Lett, 2010, 493(4): 296-298.
[36] Tian Lei, Ghosh Debraj, Chen Wei, et al. Nanosized carbon particles from natural gas soot[J]. Chem Mater, 2009, 21(13), 2803-2809.
[37] Ray S C, Saha Arindam, Jana Nikhil R, et al. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application[J]. J Phys Chem C, 2009, 113(43):18546-18551.
[38] Cao Li, Wang Xin, Sun Yaping, et al. Carbon dots for multiphoton bioimaging[J]. J Am Chem Soc, 2007, 129(37):11318-11319.
[39] Yuan Longyan, Dai Junjie, Fan Xiaohong, et al. Self-cleaning flexible infrared nanosensor based on carbon nanoparticles[J]. ACS Nano, 2011, 5(5): 4007-4013.
[40] Wang Fu, Chen Yonghua, Liu Chunyan, et al. White light-emitting devices based on carbon dots’ electroluminescence[J]. Chem Commun, 2011, 47(12): 3502-3504.
[41] Zhao Hengxin, Liu Liqin, Liu Zhongde, et al. Highly selective detection of phosphate in very complicated matrixes with an off-on ?uorescent probe of europium-adjusted carbon dots[J]. Chem Commun, 2011, 47(9): 2604-2606.
[42] Bai Wenjun, Zheng Huzhi, Long Yijuan, et al. A carbon dots-based fluorescence turn-on method for DNA determination[J]. Anal Sci, 2011, 27(3): 243-246.
[43] Gon?alvesa Helena, Jorge Pedro A S, Fernandes J R A, et al. Hg(II) sensing based on functionalized carbon dots obtained by direct laser ablation[J]. Sensor Actuat B-chem, 2010, 145(2): 702-707.
[44] Gon?alvesa Helena, Duarte Abel J, and da Silva Joaquim C G Esteves. Optical fiber sensor for Hg(II) based on carbon dots[J]. Biosens Bioelectron, 2010, 26(4): 1302-1306.
[45] Sun Wen, Du Yingxiang, Wang Yunqing, et al. Study on ?uorescence properties of carbogenic nanoparticles and their application for the determination of ferrous succinate[J]. J Lumin, 2010, 130(8): 1463-1469.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Power and Energy Commons