Abstract
A facile and template-free hydrothermal method is proposed to successfully synthesize porous NiO hierarchical structure, which is found to be assembled from ultrathin NiO nanosheets. As for electrochemical pseudocapacitor application, the obtained material exhibits not only high specific capacitances of 435 F?g-1 at 20 mV?s-1 and 367 F?g-1 at 10 A?g-1, but also holds a good electrochemical stability over 1000 cycles at a current rate of 20 mV?s-1. These results suggest that the hierarchical structured porous NiO is a promising supercapacitor electrode material.
Graphical Abstract
Keywords
Supercapacitor, NiO, Hierarchical structure, Template-free, Electrochemical stability
Publication Date
2012-04-28
Online Available Date
2012-02-25
Revised Date
2012-02-15
Received Date
2011-12-24
Recommended Citation
Yun HUANG, Zhong WU, Xin-Bo ZHANG.
Template-free Synthesis of Porous NiO Hierarchical Structure for High Performance Supercapacitors[J]. Journal of Electrochemistry,
2012
,
18(2): Article 10.
DOI: 10.61558/2993-074X.2896
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol18/iss2/10
References
[1] Conway B E. Electrochemical Supercapacitors [M]. New York: Kluwer Academic/Plenum, 1999.11.
[2] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nature Materials, 2008, 7(11): 845-854.
[3] Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices [J]. Nature Materials, 2005, 4(5): 366-377.
[4] Zhang L L, Zhao X S. Carbon-based materials as supercapacitor electrodes [J]. Chemical Society Reviews, 2009, 38(9): 2520-2531.
[5] Xie Y B, Fu D G. Supercapacitance of ruthenium oxide deposited on titania and titanium substrates [J]. Materials Chemistry and Physics, 2010, 122(1): 23-29.
[6] Yoon Y S, Cho W I, Lim J H, et al. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films [J]. Journal of Power Sources, 2001, 101(1): 126-129.
[7] Zhang J T, Ma J Z, Zhang L L, et al. Template synthesis of tubular ruthenium oxides for supercapacitor applications [J]. Journal of Physical Chemistry C, 2010, 114(32): 13608-13613.
[8] Sun X, Wang G K, Hwang J Y, et al. Porous nickel oxide nano-sheets for high performance pseudocapacitance materials [J]. Journal of Materials Chemistry, 2011, 21(41): 16581-16588.
[9] Prasad K R, Miura N. Electrochemically deposited nanowhiskers of nickel oxide as a high-power pseudocapacitive electrode [J]. Applied Physics Letters, 2004, 85(18): 4199-4201.
[10] Kim H K, Seong T Y, Lim J H, et al. Electrochemical and structural properties of radio frequency sputtered cobalt oxide electrode for thin-film supercapacitors [J]. Journal of Power Sources, 2001, 102(1/2): 167-171.
[11] Gao Y Y, Chen S L, Cao D X, et al. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam [J]. Journal of Power Sources, 2010, 195(6): 1757-1760.
[12] Subramanian V, Zhu H W, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructrures [J]. Journal of Physical Chemistry B, 2005, 109(43): 20207-20214.
[13] Wang H L, Casalongue H S, Liang Y Y, et al. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials [J]. Journal of the American Chemical Society, 2010, 132(21): 7472-7477.
[14] Zhou W J, Zhang J, Xue T, et al. Electrodeposition of ordered mesoporous cobalt hydroxide film from lyotropic liquid crystal media for electrochemical capacitors [J]. Journal of Materials Chemistry, 2008, 18(8): 905-910.
[15] Zhang K, Zhang L L, Zhao X S. Graphene/polyaniline nanofiber composites as supercapacitor electrodes [J]. Chemistry of Materials, 2010, 22(4): 1392-1401.
[16] Xia X H, Tu J P, Wang X L, et al. Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material [J]. Journal of Materials Chemistry, 2011, 21(3): 671-679.
[17] Ding S J, Zhu T, Lou X W (David), et al. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance [J]. Journal of Materials Chemistry, 2011, 21(18): 6602-6606.
[18] Yuan C Z, Zhang X G, Shen L F, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors [J]. Journal of Materials Chemistry, 2009, 19(32): 5772-5777.
[19] Lang J W, Kong L B, et al. Facile approach to prepare loose-packed NiO nano-?akes materials for supercapacitors [J]. Chemical Communications, 2008, (35): 4213-4215.
[20] Hu J C, Zhu K, Richards R, et al. Preparation and surface activity of single-crystalline NiO (111) nanosheets with hexagonal holes: a semiconductor nanospanner [J]. Advanced Materials, 2008, 20(2): 267-271.
[21] Meher S K, Justin P, Rao G R. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide [J]. Electrochimica Acta, 2010, 55(28): 8388-8396.
[22] Zhang X J, Shi W H, Zhu J X, et al. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes [J]. Nano Research, 2010, 3(9): 643-652.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons