•  
  •  
 

Corresponding Author

Zhen-Hai WEN(wen@fjirsm.ac.cn);Jing-Hong LI

Abstract

Microbial fuel cells (MFCs) are devices that can directly convert organic chemical energy into electrical energy with microbial as catalysts. MFCs are a promising bio-electrochemical system with the potential to degrade organic sewage and produce electricity. This article supplies a critical and comprehensive review for the electrode materials concerning about anode and cathode in MFCs, including the fabrications, functional modifications and surface constructions of electrode materials, as well as their applications in MFCs. Additionally, the existing problems of electrode materials in current MFCs have been demonstrated in order to provide the guideline for exploring the next-generation electrode materials for MFCs.

Graphical Abstract

Keywords

microbial fuel cells, anode, cathode

Publication Date

2012-06-28

Online Available Date

2012-03-25

Revised Date

2012-03-22

Received Date

2011-12-05

References

[1] Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.

[2] Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919.

[3] Das S, Mangwani N. Recent developments in microbial fuel cells: A review[J]. Journal of Scientific & Industrial Research, 2010, 69(10): 727-731.

[4] Lu N (卢娜), Zhou S G (周顺桂), Ni J R (倪晋仁). Mechanism of energy generation of microbial fuel cells[J]. Progress in Chemisity (化学进展), 2008, 20(7/8): 1233-1240.

[5] Cheng S A, Logan B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3): 492-496.

[6] Rinaldi A, Mecheri B, Garavaglia V, et al. Engineering materials and biology to boost performance of microbial fuel cells: A critical review[J]. Energy & Environmental Science, 2008, 1(4): 417-429.

[7] Zeng L Z (曾丽珍),Li W S (李伟善). Research progress on the electrode matrials for microbial FC[J]. Chinese Battery Industry (电池工业), 2009, 14(4): 280-284.

[8] Kim B H, Chang I S, Gadd G M. Challenges in microbial fuel cell development and operation[J]. Applied Microbiology and Biotechnology, 2007, 76(3): 485-494.

[9] Zhou M H, Chi M L, Luo J M, et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10): 4427-4435.

[10] Wu C (武晨), Zhang J Q (张嘉琪), Wang, X L(王晓丽), et al. Power generation of microbial fuel cell from aniline and glucose[J]. Acta Scientiae Circumstantiae (环境科学报), 2011, 31(6): 1227-1232.

[11] Wang X, Feng Y J, Lee H. Electricity production from beer brewery wastewater using single chamber microbial fuel cell[J]. Water Science and Technology, 2008, 57(7): 1117-1121.

[12] Liu H, Ramnarayanan R, Logan B E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell[J]. Environmental Science & Technology, 2004, 38(7): 2281-2285.

[13] Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells[J]. Nature Biotechnology, 2003, 21(10): 1229-1232.

[14] Wang H M, Davidson M, Zuo Y, et al. Recycled tire crumb rubber anodes for sustainable power production in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(14): 5863-5866.

[15] Logan B E, Cheng S A, Watson V, et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9): 3341-3346.

[16] Zhao F, Rahunen N, Varcoe J R, et al. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell[J]. Environmental Science & Technology, 2008, 42(13): 4971-4976.

[17] He Z, Wagner N, Minteer S D, et al. An upflow microbial fuel cell with an interior cathode: Assessment of the internal resistance by impedance spectroscopy[J]. Environmental Science & Technology, 2006, 40(17): 5212-5217.

[18] Kalathil S, Lee J, Cho M H. Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation[J]. New Biotechnology, 2011, 29(1): 32-37.

[19] Feng Y, Yang Q, Wang X, et al. Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells[J]. Journal of Power Sources, 2010, 195(7): 1841-1844.

[20] Wang X, Cheng S A, Feng Y J, et al. Use of carbon mesh anodes and the effect of different pretreatment methods on power production in microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(17): 6870-6874.

[21] Saito T, Mehanna M, Wang X, et al. Effect of nitrogen addition on the performance of microbial fuel cell anodes[J]. Bioresource Technologyogy, 2011, 102(1): 395-398.

[22] Tender L M, Reimers C E, Stecher H A, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8): 821-825.

[23] Lowy D A, Tender L M, Zeikus J G, et al. Harvesting energy from the marine sediment-water interface II - Kinetic activity of anode materials[J]. Biosensors and Bioelectronics, 2006, 21(11): 2058-2063.

[24] Feng C H, Ma L, Li F B, et al. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells[J]. Biosensors and Bioelectronics, 2010, 25(6): 1516-1520.

[25] Scott K, Rimbu G A, Katuri K P, et al. Application of modified carbon anodes in microbial fuel cells[J]. Process Safety and Environmental Protection, 2007, 85(B5): 481-488.

[26] Kim J R, Min B, Logan B E. Evaluation of procedures to acclimate a microbial fuel cell for electricity production[J]. Applied Microbiology and Biotechnology, 2005, 68(1): 23-30.

[27] Park D H, Zeikus J G. Improved fuel cell and electrode designs for producing electricity from microbial degradation[J]. Biotechnology and Bioengineering, 2003, 81(3): 348-355.

[28] Rosenbaum M, Schroder U, Scholz F. Investigation of the electrocatalytic oxidation of formate and ethanol at platinum black under microbial fuel cell conditions[J]. Journal of Solid State Electrochemistry, 2006, 10(10): 872-878.

[29] Nam J Y, Kim H W, Lim K H, et al. Electricity generation from MFCs using differently grown anode-attached bacteria[J]. Environmental Engineering Research, 2010, 15(2): 71-78.

[30] Wang K P (王凯鹏), Chen S L (陈胜利). The synthesise of electron-conducting redox hydrogel and its application in microbial fuel cell[J]. Journal of Electrochemistry (电化学), 2010, 16(1): 20-24.

[31] Peng L, You S J, Wang J Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis[J]. Biosensors and Bioelectronics, 2010, 25(5): 1248-1251.

[32] Liang P (梁鹏), Fan M Z (范明志), Cao X X (曹效鑫), et al. Electricity generation by the microbial fuel cells using carbon nanotube as the anode[J]. Environmental Science (环境科学), 2008, 29(8): 2356-2360.

[33] Sharma T, Reddy A L M, Chandra T S, et al. Development of carbon nanotubes and nanofluids based microbial fuel cell[J]. International Journal of Hydrogen Energy, 2008, 33(22): 6749-6754.

[34] Nambiar S, Togo C A, Limson J L. Application of multi-walled carbon nanotubes to enhance anodic performance of an enterobacter cloacae-based fuel cell[J]. African Journal of Biotechnology, 2009, 8(24): 6927-6932.

[35] Tsai H Y, Wu C C, Lee C Y, et al. Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes[J]. Journal of Power Sources, 2009, 194(1): 199-205.

[36] Sun J J, Zhao H Z, Yang Q Z, et al. A novel layer-by-layer self-assembled carbon nanotube-based anode: Preparation, characterization, and application in microbial fuel cell[J]. Electrochimica Acta, 2010, 55(9): 3041-3047.

[37] Xie X, Hu L B, Pasta M, et al. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells[J]. Nano Letters, 2011, 11(1): 291-296.

[38] Magrez A, Kasas S, Salicio V, et al. Cellular toxicity of carbon-based nanomaterials[J]. Nano Letters, 2006, 6(6): 1121-1125.

[39] Dong H, Li C M, Chen W, et al. Sensitive amperometric immunosensing using polypyrrolepropylic acid films for biomolecule immobilization[J]. Analytical Chemistry, 2006, 78(21): 7424-7431.

[40] Li C M, Chen W, Yang X, et al. Impedance labelless detection-based polypyrrole protein biosensor[J]. Frontiers in Bioscience, 2005, 10: 2518-2526.

[41] Schroder U, Niessen J, Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude[J]. Angewandte Chemie International Edition, 2003, 42(25): 2880-2883.

[42] Niessen J, Schroder U, Rosenbaum M, et al. Fluorinated polyanilines as superior materials for electrocatalytic anodes in bacterial fuel cells[J]. Electrochemistry Communications, 2004, 6(6): 571-575.

[43] Qiao Y, Li C M, Bao S J, et al. Carbon nanotube/polyaniline composite as anode material for microbial fuel cells[J]. Journal of Power Sources, 2007, 170(1): 79-84.
[44] Zou Y J, Xiang C L, Yang L N, et al. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material[J]. International Journal of Hydrogen Energy, 2008, 33(18): 4856-4862.
[45] Ci S Q, Wen Z H, Chen J H, et al. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells[J]. Electrochemistry Communications, 2012, 14(1):71-74.
[46] Chen D, Tang L H, Li J H. Graphene-based materials in electrochemistry[J]. Chemical Society Reviews, 2010, 39(8): 3157-3180.
[47] Chang H X, Zhang H, Lv X J, et al. Quantum dots sensitized graphene: In situ growth and application in photoelectrochemical cells[J]. Electrochemistry Communications, 2010, 12(3): 483-487.
[48] Li Y M, Lv X J, Lu J, et al. Preparation of SnO2 nanocrystal/graphene nanosheets composites and their lithium storage ability[J]. Journal of Physical Chemistry C, 2010, 114(49): 21770-21774.
[49] Xia J L, Chen F, Li J H, et al. Measurement of quantum capacitance of graphene[J]. Nature Nonotechnology, 2009, 4: 505-509.
[50] Li Y M, Tang L H, Li J H. Pt/graphene nano composites as the anode catalyst of methanol oxidation[J]. Electrochemistry Communications, 2009, 11(4): 846-849.
[51] Tang L H, Wang Y, Li Y M, et al. Preparation, structure and electrochemical properties of graphene modified electrode[J]. Advanced Functional Materials, 2009, 19(17): 2782-2789.
[52] Huang Y X, Liu X W, Xie J F, et al. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems[J]. Chemical Communications, 2011, 47(20): 5795-5797.
[53] Zhang Y, Mo G, Li X, et al. A graphene modified anode to improve the performance of microbial fuel cells[J]. Journal of Power Sources, 2011, 196(13): 5402-5407.
[54] Luo J Y, Jang H D, Sun T, et al. Compression and aggregation-resistant particles of crumpled soft sheets[J]. ACS Nano, 2012, 5(11): 8943-8949.
[55] Watanabe K. Recent sevelopments in microbial fuel cell technologies for sustainable bioenergy[J]. Journal of Bioscience and Bioengineering, 2008, 106(6): 528-536.
[56] Cheng S, Liu H, Logan B E. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(1): 364-369.
[57] Sanchez D V P, Huynh P, Kozlov M E, et al. Carbon nanotube/platinum (Pt) sheet as an improved cathode for microbial fuel cells[J]. Energy & Fuels, 2010, 24(11): 5897-5902.
[58] Xie X, Pasta M, Hu L B, et al. Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(4): 1293-1297.
[59] Morris J M, Jin S, Wang J Q, et al. Lead dioxide as an alternative catalyst to platinum in microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(7): 1730-1734.
[60] Roche I, Scott K. Carbon-supported manganese oxide nanoparticles as electrocatalysts for oxygen reduction reaction (orr) in neutral solution[J]. Journal of Applied Electrochemistry, 2009, 39(2): 197-204.
[61] Zhang L X, Liu C S, Zhuang L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24(9): 2825-2829.
[62] Li X, Hu B X, Suib S, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells[J]. Journal of Power Sources, 2010, 195(9): 2586-2591.
[63] Liu X W, Sun X F, Huang Y X, et al. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Research, 2010, 44(18): 5298-5305.
[64] Lu M, Kharkwal S, Ng H Y, et al. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 26(12): 4728-4732.
[65] Jasinski R. A new fuel cell cathode catalyst[J]. Nature 1964, 201: 1212 - 1213.
[66] Faubert G, Lalande G, Cote R, et al. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta, 1996, 41(10): 1689-1701.
[67] Ohms D, Herzog S, Franke R, et al. Influence of metal-ions on the electrocatalytic oxygen reduction of carbon materials prepared from pyrolyzed polyacrylonitrile[J]. Journal of Power Sources, 1992, 38(3): 327-334.
[68] Zhao F, Harnisch F, Schroder U, et al. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells[J]. Electrochemistry Communications, 2005, 7(12): 1405-1410.
[69] Hao Y E, Cheng S A, Scott K, et al. Microbial fuel cell performance with non-Pt cathode catalysts[J]. Journal of Power Sources, 2007, 171(2): 275-281.
[70] Harnisch F, Savastenko N A, Zhao F, et al. Comparative study on the performance of pyrolyzed and plasma-treated iron(II) phthalocyanine-based catalysts for oxygen reduction in pH neutral electrolyte solutions[J]. Journal of Power Sources, 2009, 193(1): 86-92.
[71] Kim J R, Kim J Y, Han S B, et al. Application of co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells[J]. Bioresource Technology, 2011, 102(1): 342-347.
[72] Birry L, Mehta P, Jaouen F, et al. Application of iron-based cathode catalysts in a microbial fuel cell[J]. Electrochimica Acta, 2011, 56(3): 1505-1511.
[73] Yuan Y, Ahmed J, Kim S. Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J]. Journal of Power Sources, 2011, 196(3): 1103-1106.
[74] Zhang Y, Mo G, Li X, et al. Iron tetrasulfophthalocyanine functionalized graphene as a platinum-free cathodic catalyst for efficient oxygen reduction in microbial fuel cells[J]. Journal of Power Sources, 2012, 197: 93-96.
[75] Zhang F, Cheng S A, Pant D, et al. Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell[J]. Electrochemistry Communications, 2009, 11(11): 2177-2179.
[76] Zhang F, Pant D, Logan B E. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells[J]. Biosensors and Bioelectronics, 2011, 30(1): 49-55.
[77] Feng L Y, Yan Y Y, Chen Y G, et al. Nitrogen-doped carbon nanotubes as efficient and durable metal-free cathodic catalysts for oxygen reduction in microbial fuel cells[J]. Energy & Environmental Science, 2011, 4(5): 1892-1899.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.