•  
  •  
 

Corresponding Author

Herrero Enrique(herrero@ua.es);
M. Feliu Juan(juan.feliu@ua.es)

Abstract

The underpotential deposition of Cu on platinum stepped surfaces composed of (100) terraces and (110) monoatomic steps has been studied in different acidic solutions. It has been found that the initial stage of copper deposition on the surface takes place simultaneously on terrace and step sites, irrespective of the nature of the adsorbing anion. During the voltammetric deposition of a full monolayer, several peaks can be observed. The analysis of the dependence of the peak charge with the step density allows assigning the different peaks to different deposition sites. The peak appearing at most positive potentials corresponds to the deposition of Cu on the terrace sites, whereas deposition on the step sites gives rise to different voltammetric contributions depending on the anion present in solution. Additionally, it has been found that the charge transferred upon Cu deposition is very close to 2e and that the anion coverage does not change during this process from that initially present on the platinum substrate.

Graphical Abstract

Keywords

Pt single crystal electrodes, copper, underpotential deposition, step decoration

Publication Date

2012-10-28

Online Available Date

2012-08-18

Revised Date

2012-08-17

Received Date

2012-06-18

References

[1] Adzic R R, Wang J X, Magnussen O M, et al. Structure of tl adlayers on the Pt(111) electrode surface: Effects of solution pH and bisulfate coadsorption[J]. Journal of Physical Chemistry, 1996,100(35): 14721-14725.

[2] Armand D, Clavilier J. Quantitative-analysis of the distribution of the hydrogen adsorption states at platinum surfaces.1. Application to Pt(100) in sulfuric-acid medium[J]. Journal of Electroanalytical Chemistry, 1987, 225(1/2): 205-214.

[3] Buller L J, Herrero E, Gómez R, et al. Anion effects and induced adsorption of chloride by submonolayer amounts of copper on deliberately stepped platinum surfaces[J]. Journal of Physical Chemistry B, 2000,104(25): 5932-5939.

[4] Buller L J, Herrero E, Gómez R, et al. Induced adsorption of sulfate/bisulfate anions by submonolayer amounts of copper on deliberately stepped Pt surfaces[J]. Journal of the Chemical Society-Faraday Transactions, 1996,92(20): 3757-3762.

[5] Buller L J, Abruna H D, Herrero E, et al. Induced adsorption of sulfate bisulfate and chloride anions by submonolayer amounts of copper on the stepped surfaces of platinum[J]. Abstracts of Papers of the American Chemical Society, 1995, 210: 173-COLL

[6] Clavilier J, Orts J M, Gómez R, et al. 1994. On the nature of the charged species displaced by co adsorption from platinum oriented electrodes in sulphuric acid solution[M]. ed. BE Conway, G Jerkiewicz, pp. 167-183. Pennington, NJ: The Electrochemical Society, INC.

[7] Clavilier J, Armand D, Sun S G, et al. Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 205(1/2): 267-277.

[8] Climent V, Gómez R, Orts J M, et al. Thermodynamic analysis of the temperature dependence of oh adsorption on Pt(111) and Pt(100) electrodes in acidic media in the absence of specific anion adsorption[J]. Journal of Physical Chemistry B, 2006,110(23): 11344-11351.

[9] Danilov A I, Molodkina E B, Polukarov Y M, et al. Active centers for cuupd-opd in acid sulfate solution on Pt(111) electrodes[J]. Electrochimica Acta, 2001,46(20/21): 3137-3145.

[10] Del Colle V, Souza-Garcia J, Tremiliosi G, et al. Electrochemical and spectroscopic studies of ethanol oxidation on Pt stepped surfaces modified by tin adatoms[J]. Physical Chemistry Chemical Physics, 2011,13(26): 12163-12172.

[11] Del Colle V, Berna A, Tremiliosi G, et al. Ethanol electrooxidation onto stepped surfaces modified by Ru deposition: Electrochemical and spectroscopic studies[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3766-3773.

[12] Domke K, Herrero E, Rodes A, et al. Determination of the potentials of zero total charge of Pt(100) stepped surfaces in the 01(-1) zone. Effect of the step density and anion adsorption[J]. Journal of Electroanalytical Chemistry, 2003, 552: 115-128.

[13] Feliu J M, Herrero E, Climent V. Catalysis in electrochemistry//[M], ed. E Santos, W Schmickler, 2011, pp. 127-163. Hoboken: John Wiley & Sons, Inc.

[14] Feliu J M, Fernández-Vega A, Aldaz A, et al. New observations of a structure sensitive electrochemical-behavior of irreversibly adsorbed arsenic and antimony from acidic solutions on Pt(111) and Pt(100) orientations[J]. Journal of Electroanalytical Chemistry, 1988, 256: 149-163.

[15] Francke R, Climent V, Baltruschat H, et al. Electrochemical deposition of copper on stepped platinum surfaces in the 01(1)over-bar zone vicinal to the (100) plane[J]. Journal of Electroanalytical Chemistry, 2008, 624: 228-240.

[16] Gamboaaldeco M E, Herrero E, Zelenay P S, et al. Adsorption of bisulfate anion on a Pt(100) electrode - a comparison with Pt(111) and Pt(poly)[J]. Journal of Electroanalytical Chemistry, 1993,348: 451-457.

[17] Garcia-Araez N, Climent V, Herrero E, et al. Thermodynamic studies of bromide adsorption at the Pt(111) electrode surface perchloric acid solutions: Comparison with other anions[J]. Journal of Electroanalytical Chemistry, 2006, 591: 149-158.

[18] Garcia-Araez N, Lukkien J J, Koper MTM, et al. Competitive adsorption of hydrogen and bromide on Pt(100): Mean-field approximation vs. Monte carlo simulations[J]. Journal of Electroanalytical Chemistry, 2006, 588: 1-14.

[19] Garcia-Araez N, Climent V, Herrero E, et al. On the electrochemical behavior of the Pt(100) vicinal surfaces in bromide solutions[J]. Surface Science, 2004, 560(1/3): 269-284.

[20] Gómez R, Orts J M, Alvarez-Ruiz B, et al. Effect of temperature on hydrogen adsorption on Pt(111), Pt(110), and Pt(100) electrodes in 0.1 M HClO4[J]. Journal of Physical Chemistry B, 2004, 108(1): 228-238.

[21] Gómez R, Yee H S, Bommarito G M, et al. Anion effects and the mechanism of Cu UPD on Pt(111) - X-ray and electrochemical studies[J]. Surface Science, 1995, 335: 101-109.

[22] Gómez R, Feliu J M, Abruna H D. Induced adsorption of chloride and bromide by submonolayer amounts of copper underpotentially deposited on Pt(111)[J]. Journal of Physical Chemistry B, 1994, 98: 5514-5521.

[23] Gómez R, Clavilier J. Electrochemical behaviour of platinum surfaces containing (110) sites and the problem of the third oxidation peak[J]. Journal of Electroanalytical Chemistry, 1993, 354: 189-208.

[24] Herrero E, Buller L J, Abruna H D. Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials[J]. Chemical Reviews, 2001,101(7): 1897-1930.

[25] Herrero E, Climent V, Feliu J M. On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface[J]. Electrochemistry Communications, 2000, 2: 636-640.

[26] Herrero E, Glazier S, Abruna H D. X-ray and electrochemical studies of cu upd on Au(111) single-crystal electrodes in the presence of bromide[J]. Journal of Physical Chemistry B, 1998, 102: 9825-9833.

[27] Hoshi N, Nakahara A, Nakamura M, et al. Surface X-ray scattering of high index plane of platinum containing kink atoms in solid-liquid interface: Pt(310) = 3(100)-(110)[J]. Electrochimica Acta, 2008, 53(21): 6070-6075.

[28] Inukai J, Sugita S, Itaya K. Underpotential deposition of mercury on Au(111) investigated by in situ scanning tunnelling microscopy[J]. Journal of Electroanalytical Chemistry, 1996, 403: 159-168.

[29] Kibler L A, El Aziz A M, Hoyer R, et al. Tuning reaction rates by lateral strain in a palladium monolayer[J]. Angewandte Chemie International Edition, 2005, 44(14): 2080-2084.

[30] Lang B, Joyner R W, Somorjai G A. Leed studies of high index crystal surfaces of platinum[J]. Surface Science, 1972, 30: 440.

[31] Leiva E, Iwasita T, Herrero E, et al. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model[J]. Langmuir, 1997, 13(23): 6287-6293.

[32] Llorca M J, Feliu J M, Aldaz A, et al. Formic acid oxidation on Pdad + Pt(100) and Pdad + Pt(111) electrodes[J]. Journal of Electroanalytical Chemistry, 1994, 376: 151-160.

[33] Maciá M D, Herrero E, Feliu J M. Formic acid self-poisoning on adatom-modified stepped electrodes[J]. Electrochimica Acta, 2002, 47(22/23): 3653-3661.

[34] Maciá M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified stepped electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 500: 498-509.

[35] Magnussen O M, Hotlos J, Beitel G, et al. Atomic structure of ordered copper adlayers on single-crystalline gold electrodes[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1991, 9(2): 969-975.

[36] Magnussen O M, Hotlos J, Nichols R J, et al. Atomic structure of Cu adlayers on Au(100) and Au(111) electrodes observed by in situ scanning tunneling microscopy[J]. Physical Review Letters, 1990, 64: 2929-2932.

[37] Markovic N M, Marinkovic N S, Adzic R R. Electrosorption of hydrogen and sulphuric acid anions on single crystal platinum stepped surfaces. Part 1. The [110] zone[J]. Journal of Electroanalytical Chemistry, 1988,241: 309-328.
[38] Massong H, Wang H S, Samjeske G, et al. The co-catalytic effect of Sn, Ru and Mo decorating steps of Pt(111) vicinal electrode surfaces on the oxidation of Co[J]. Electrochimica Acta, 2000, 46(5): 701-707.
[39] Rodes A, Clavilier J, Orts J M, et al. Electrochemical behavior of platinum (100) in various acidic media. PartⅡ. On the relation between the voltammetric profiles induced by anion specific adsorption studied with a transfer technique preserving surface cleanliness and structure[J]. Journal of Electroanalytical Chemistry, 1992, 338(1/2): 317-338.
[40] Ruban A V, Skriver H L, Norskov J K. Surface segregation energies in transition-metal alloys[J]. Physical Review B, 1999, 59: 15990-16000.
[41] Samjeske G, Xiao X Y, Baltruschat H. Ru decoration of stepped Pt single crystals and the role of the terrace width on the electrocatalytic Co oxidation[J]. Langmuir, 2002, 18(12): 4659-4666.
[42] Shi Z, Lipkowski J, Gamboa M, et al. Investigations of SO42- adsorption at the Au(111) electrode by chronocoulometry and radiochemistry[J]. Journal of Electroanalytical Chemistry, 1994, 366: 317-326.
[43] Shinotsuka N, Sashikata K, Itaya K. In-situ scanning-tunneling-microscopy of underpotential deposition of Ag on Pt(111) R19.1o-1[J]. Surface Science, 1995, 335(1/3): 75-82.
[44] Smoluchowski R. Anisotropy of the electronic work function of metals[J]. Physical Review, 1941, 60: 661-674.
[45] Solla-Gullón J, Rodríguez P, Herrero E, et al. Surface characterization of platinum electrodes[J]. Physical Chemistry Chemical Physics, 2008, 10: 1359-1373.
[46] Souza-Garcia J, Climent V, Feliu J M. Voltammetric characterization of stepped platinum single crystal surfaces vicinal to the (110) pole[J]. Electrochemistry Communications, 2009, 11(7): 1515-1518.
[47] Zolfaghari A, Jerkiewicz G. Temperature-dependent research on Pt(111) and Pt(100) electrodes in aqueous H2SO4[J]. Journal of Electroanalytical Chemistry, 1999, 467: 177-185.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.