•  
  •  
 

Abstract

Fuel cell is an electrochemical energy conversion device to directly convert the chemical energy of fuels to electricity. Among all types of fuel cells, solid oxide fuel cells (SOFCs) operating at intermediate temperatures of 600~800 oC offer an attractive option that is much more fuel flexible than low temperature fuel cells such as proton exchange membrane fuel cells, and is suitable for a wide range of applications. However, two main challenges remain towards the commercial viability and acceptance of the SOFC technologies: the cost and durability. Both are critically dependent on the process, fabrication, performance, chemical and microstructural stability of various cell components, including anode, cathode, electrolyte, interconnect, and seal. Manifold and balance of plant materials also need to be carefully selected to ensure the structural stability and integrity with minimum volatile species. This article aims at providing a concise review and outlook of materials and components that have studied for SOFCs. The opportunities and challenges for the new generation of SOFCs technologies are briefly discussed.

Graphical Abstract

Keywords

intermediate temperature solid oxide fuel cells, review, challenges, materials

Publication Date

2012-12-28

Online Available Date

2012-08-03

Revised Date

2012-07-26

Received Date

2012-05-31

References

[1] Jacobson A J. Materials for Solid Oxide Fuel Cells[J]. Chemistry of Materials, 2010, 22: 660-674.

[2] Brett D J L, Atkinson A, Brandon N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37: 1568-1578.

[3] Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells[J]. Journal of Materials Science, 2004, 39: 4405-4439.

[4] Muller A C, Herbstritt D, Ivers-Tiffee E. Development of a multilayer anode for solid oxide fuel cells[J]. Solid State Ionics, 2002, 152-153: 537-542.

[5] Dees D W, Claar T D, Easler T E, et al. Conductivity of porous Ni/Zro2-Y2o3 cermets[J]. Journal of the Electrochemical Society, 1987, 134: 2141-2146.

[6] Murray E P, Tsai T, Barnett S A. A direct-methane fuel cell with a ceria-based anode[J]. Nature, 1999, 400: 649-651.

[7] Tsoga A, Naoumidis A, Nikolopoulos P. Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ[J]. Acta Materialia, 1996, 44: 3679-3692.

[8] Jiang S P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cells[J]. Journal of Materials Science, 2003, 38: 3775-3782.

[9] Wilson J R, Kobsiriphat W, Mendoza R, et al. Three-dimensional reconstruction of a solid-oxide fuel-cell anode[J]. Nature Materials, 2006, 5: 541-544.

[10] Chen H Y, Yu H C, Cronin J S, et al. Simulation of coarsening in three-phase solid oxide fuel cell anodes[J]. Journal of Power Sources, 2011, 196: 1333-1337.

[11] Zha S W, Cheng Z, Liu M L. Sulfur poisoning and regeneration of Ni-based anodes in solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2007, 154: B201-B206.

[12] Eguchi K, Kojo H, Takeguchi T, et al. Fuel flexibility in power generation by solid oxide fuel cells[J]. Solid State Ionics, 2002, 152: 411-416.

[13] Kim H, da Rosa C, Boaro M, et al. Fabrication of highly porous yttria-stabilized zirconia by acid leaching nickel from a nickel-yttria-stabilized zirconia cermet[J]. Journal of the American Ceramic Society, 2002, 85: 1473-1476.

[14] Kim H, Lu C, Worrell W L, et al. Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells[J]. Journal of the Electrochemical Society, 2002, 149: A247-A250.

[15] Zha S, Tsang P, Cheng Z, et al. Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1-xMnxO3 under anodic conditions[J]. Journal of Solid State Chemistry, 2005, 178: 1844-1850.

[16] Mukundan R, Brosha E L, Garzon F H. Sulfur Tolerant Anodes for SOFCs[J]. Electrochemical and Solid-State Letters, 2004, 7: A5-A7.

[17] Aguilar L, Zha S, Li S, et al. Sulfur-tolerant materials for the hydrogen sulfide SOFC[J]. Electrochemical and Solid-State Letters, 2004, 7: A324-A326.

[18] Marina O A, Pederson L R. Novel ceramic anodes for SOFCs tolerant to oxygen, carbon and sulfur, in The Fifth European Solid Oxide Fuel Cell Forum[M]//J Huijismans. European Fuel Cell Forum. Switzerland: Lucerne, 2002: 481-489.

[19] Yang C H, Yang Z B, Jin C, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24: 1439-1443.

[20] Jiang S P, Chen X J, Chan S H, et al. (La0.75Sr0.25)(Cr0.5Mn0.5)O3/YSZ composite anodes for methane oxidation reaction in solid oxide fuel cells[J]. Solid State Ionics, 2006, 177: 149-157.

[21] Ong K P, Wu P, Liu L, et al. Optimization of electrical conductivity of LaCrO3 through doping: A combined study of molecular modeling and experiment[J]. Applied Physics Letters, 2007, 90.

[22] Tao S W, Irvine J T S. Synthesis and characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a redox-stable, efficient perovskite anode for SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A252-A259.

[23] Jiang S P, Love J G, Apateanu L. Effect of contact between electrode and current collector on the performance of solid oxide fuel cells[J]. Solid State Ionics, 2003, 160: 15-26.

[24] Trembly J P, Marquez A I, Ohrn TR, et al. Effects of coal syngas and H2S on the performance of solid oxide fuel cells: Single-cell tests[J]. Journal of Power Sources, 2006, 158: 263-273.

[25] Zhang L, Jiang S P, He H Q, et al. A comparative study of H2S poisoning on electrode behavior of Ni/YSZ and Ni/GDC anodes of solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2010, 35: 12359-12368.

[26] Kerman K, Lai B K, Ramanathan S. Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations[J]. Journal of Power Sources, 2011, 196: 2608-2614.

[27] Ye Y M, He T M, Li Y, et al. Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs[J]. Journal of the Electrochemical Society, 2008, 155: B811-B818.

[28] Klages M, Kruger P, Haussmann J, et al. Investigation of the influence of GDL properties on the water balance by means of neutron radiography[J]. Materials Testing, 2010, 52: 718-724.

[29] Jin Y, Yasutake H, Yamahara K, et al. Suppressed carbon deposition behavior in nickel/yittria-stablized zirconia anode with SrZr0.95Y0.05O3-α in Dry Methane Fuel[J]. Journal of the Electrochemical Society, 2010, 157: B130-B134.

[30] Wang W, Jiang S P, Tok A I Y, et al. GDC-impregnated Ni anodes for direct utilization of methane in solid oxide fuel cells[J]. Journal of Power Sources, 2006, 159: 68-72.

[31] Yang L, Choi Y, Qin W T, et al. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nature Communications, 2011, 2.

[32] Cheng Z, Wang J H, Choi Y M, et al. From Ni-YSZ to sulfur-tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modeling, and future perspectives[J]. Energy & Environmental Science, 2011, 4: 4380-4409.

[33] Jiang S P. Development of lanthanum strontium manganite perovskite cathode materials of solid oxide fuel cells: a review[J]. Journal of Materials Science, 2008, 43: 6799-6833.

[34] Carter S, Selcuk A, Chater R J, et al. Oxygen-transport in selected nonstoichiometric perovskite-structure oxides[J]. Solid State Ionics, 1992, 53-6: 597-605.

[35] Zhen Y D, Jiang S P. Transition behavior for O2 reduction reaction on (La,Sr)MnO3/YSZ composite cathodes of solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2006, 153: A2245-A2254.

[36] Jiang S P, Wang W. Fabrication and performance of GDC-impregnated (La,Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2005, 152: A1398-A1408.

[37] Esquirol A, Brandon N P, Kilner J A, et al. Electrochemical characterization of La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate-temperature SOFCs[J]. Journal of the Electrochemical Society, 2004, 151: A1847-A1855.

[38] Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes[J]. Solid State Ionics, 2002, 146: 1-22.

[39] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.

[40] Wei B, Lu Z, Li S Y, et al. Thermal and electrical properties of new cathode material Ba0.5Sr0.5Co0.8Fe0.2O3-δ for solid oxide fuel cells[J]. Electrochemical and Solid State Letters, 2005, 8: A428-A431.

[41] Yi J X, Schroeder M, Weirich T, et al. Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: Degradation mechanism and materials design[J]. Chemistry of Materials, 2010, 22: 6246-6253.

[42] Zhou W, Liang F L, Shao Z P, et al. Hierarchical CO2-protective shell for highly efficient oxygen reduction reaction[J]. Scientific Reports, 2012, 2.

[43] Tu H Y, Stimming U. Advances, aging mechanisms and lifetime in solid-oxide fuel cells[J]. Journal of Power Sources, 2004, 127: 284-293.

[44] Fergus J W. Effect of cathode and electrolyte transport properties on chromium poisoning in solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2007, 32: 3664-3671.
[45] Schuler J A, Gehrig C, Wuillemin Z, et al. Air side contamination in solid oxide fuel cell stack testing[J]. Journal of Power Sources, 2011, 196: 7225-7231.
[46] Taniguchi S, Kadowaki M, Yasuo T, et al. Suppression of chromium diffusion to an SOFC cathode from an alloy separator by a cathode second layer[J]. Denki Kagaku, 1996, 64: 568-574.
[47] Fu C J, Sun K N, Zhang N Q, et al. Mechanism of chromium poisoning of LSM cathode in solid oxide fuel cell[J]. Chemical Journal of Chinese Universities-Chinese, 2007, 28: 1762-1764.
[48] Konysheva E, Penkalla H, Wessel E, et al. Chromium poisoning of perovskite cathodes by the ODS alloy Cr5Fe1Y2O3 and the high chromium ferritic steel Crofer22APU[J]. Journal of the Electrochemical Society, 2006, 153: A765-A773.
[49] Paulson S C, Birss V I. Chromium poisoning of LSM-YSZ SOFC cathodes - I. Detailed study of the distribution of chromium species at a porous, single-phase cathode[J]. Journal of the Electrochemical Society, 2004, 151: A1961-A1968.
[50] Jiang S P, Zhang J P, Apateanu L, et al. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells I. Mechanism and kinetics[J]. Journal of the Electrochemical Society, 2000, 147: 4013-4022.
[51] Badwal S P S, Deller R, Foger K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells[J]. Solid State Ionics, 1997, 99: 297-310.
[52] Jiang SP, Christiansen L, Hughan B, et al. Effect of glass sealant materials on microstructure and performance of Sr-doped LaMnO3 cathodes[J]. Journal of Materials Science Letters, 2001, 20: 695-697.
[53] Xiong Y P, Yamaji K, Horita T, et al. Sulfur Poisoning of SOFC Cathodes[J]. Journal of the Electrochemical Society, 2009, 156: B588-B592.
[54] Horita T, Kishimoto H, Yamaji K, et al. Effects of impurities on the degradation and long-term stability for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 193: 194-198.
[55] Zhou X D, Templeton J W, Zhu Z, et al. Electrochemical performance and stability of the cathode for solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2010, 157: B1019-B1023.
[56] Jiang S P. Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: Advances and challenges[J]. International Journal of Hydrogen Energy, 2012, 37: 449-470.
[57] Gorte R J, Vohs J M. Nanostructured anodes for solid oxide fuel cells[J]. Current Opinion in Colloid & Interface Science, 2009, 14: 236-244.
[58] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique[J]. Electrochimica Acta, 2010, 55: 3595-3605.
[59] Sholklapper T Z, Jacobson C P, Visco S J, et al. Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes[J]. Fuel Cells, 2008, 8: 303-312.
[60] Liang F L, Chen J, Cheng J L, et al. Novel nano-structured Pd plus yttrium doped ZrO2 cathodes for intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2008, 10: 42-46.
[61] Sholklapper T Z, Kurokawa H, Jacobson C P, et al. Nanostructured solid oxide fuel cell electrodes[J]. Nano Letters, 2007, 7: 2136-2141.
[62] Jung SW, Vohs J M, Gorte R J. Preparation of SOFC anodes by electrodeposition[J]. Journal of the Electrochemical Society, 2007, 154: B1270-B1275.
[63] Ai N, Jiang S P, Chen K F, et al. Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36: 7661-7669.
[64] Jiang S P, Wang W. Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells[J]. Solid State Ionics, 2005, 176: 1351-357.
[65] Murray E P, Barnett S A. (La,Sr) MnO3-(Ce,Gd)O2-x composite cathodes for solid oxide fuel cells[J]. Solid State Ionics, 2001, 143: 265-273.
[66] Jiang S P, Zhang J P, Foger K. Deposition of chromium species at Sr-doped LaMnO3 electrodes in solid oxide fuel cells - II. Effect on O2 reduction reaction[J]. Journal of the Electrochemical Society, 2000, 147: 3195-3205.
[67] Murray E P, Tsai T, Barnett S A. Oxygen transfer processes in (La,Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study[J]. Solid State Ionics, 1998, 110: 235-243.
[68] Ai N, Jiang S P, Lu Z, et al. Nanostructured (Ba,Sr)(Co,Fe)O3-δ Impregnated (La,Sr)MnO3 Cathode for Intermediate-Temperature Solid Oxide Fuel Cells[J]. Journal of the Electrochemical Society, 2010, 157: B1033-B1039.
[69] Shah M, Voorhees P W, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening[J]. Solid State Ionics, 2011, 187: 64-67.
[70] Liang F L, Chen J, Jiang S P, et al. Mn-Stabilised Microstructure and Performance of Pd-impregnated YSZ Cathode for Intermediate Temperature Solid Oxide Fuel Cells[J]. Fuel Cells, 2009, 9: 636-642.
[71] Babaei A, Zhang L, Liu E J, et al. Journal of Alloys and Compounds, 2011, 509: 4781-4787.
[72] Badwal S P S. Zirconia-based solid electrolytes-microstructure, stability and ionic-conductivity [J]. Solid State Ionics, 1992, 52: 23-32.
[73] Ishihara T. Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells[J]. Bulletin of the Chemical Society of Japan, 2006, 79: 1155-1166.
[74] Hull S. Superionics: Crystal structures and conduction processes[J]. Reports on Progress in Physics, 2004, 67: 1233-1314.
[75] Nomura K, Mizutani Y, Kawai M, et al. Aging and Raman scattering study of scandia and yttria doped zirconia[J]. Solid State Ionics, 2000, 132: 235-239.
[76] Badwal S P S, Ciacchi F T, Rajendran S, et al. An investigation of conductivity, microstructure and stability of electrolyte compositions in the system 9 mol% (Sc2O3-Y2O3)-ZrO2(Al2O3)[J]. Solid State Ionics, 1998, 109: 167-186.
[77] Badwal S P S, Rajendran S. Effect of microstructures and nanostructures on the properties of ionic conductors[J]. Solid State Ionics, 1994, 70: 83-95.
[78] Liu Y, Lao L E. Structural and electrical properties of ZnO-doped 8 mol% yttria-stabilized zirconia[J]. Solid State Ionics, 2006, 177: 159-163.
[79] Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria[J]. Solid State Ionics, 2000, 129: 63-94.
[80] Zhan Z L, Wen T L, Tu H Y, et al. AC impedance investigation of samarium-doped ceria[J]. Journal of the Electrochemical Society, 2001, 148: A427-A432.
[81] Jung G B, Huang T J, Chang C L. Effect of temperature and dopant concentration on the conductivity of samaria-doped ceria electrolyte[J]. Journal of Solid State Electrochemistry, 2002, 6: 225-230.
[82] Zha S W, Xia C R, Meng G Y. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J]. Journal of Power Sources, 2003, 115: 44-48.
[83] Vanherle J, Horita T, Kawada T, et al. Sintering behaviour and ionic conductivity of yttria-doped ceria[J]. Journal of the European Ceramic Society, 1996, 16: 961-973.
[84] Zhang X, Robertson M, Deces-Petit C, et al. Internal shorting and fuel loss of a low temperature solid oxide fuel cell with SDC electrolyte[J]. Journal of Power Sources, 2007, 164: 668-677.
[85] Ishihara T, Tabuchi J, Ishikawa S, et al. Recent progress in LaGaO3 based solid electrolyte for intermediate temperature SOFCs[J]. Solid State Ionics, 2006, 177: 1949-1953.
[86] Yan J W, Matsumoto H, Enoki M, et al. High-power SOFC using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2O2-δ composite film[J]. Electrochemical and Solid State Letters, 2005, 8: A389-A391.
[87] Kosacki I, Rouleau C M, Becher P F, et al. Nanoscale effects on the ionic conductivity in highly textured YSZ thin films[J]. Solid State Ionics, 2005, 176: 1319-1326.
[88] Garcia-Barriocanal J, Rivera-Calzada A, Varela M, et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2 : Y2O3/SrTiO3 heterostructures[J]. Science, 2008, 321: 676-680.
[89] Vincent A, Savignat S B, Gervais F. Elaboration and ionic conduction of apatite-type lanthanum silicates doped with Ba, La10-xBax(SiO4) 6O3-x/2 with x=0.25-2[J]. Journal of the European Ceramic Society, 2007, 27: 1187-1192.
[90] Slater P R, Sansom J E H, Tolchard J R. Development of apatite-type oxide ion conductors[J]. Chemical Record, 2004, 4: 373-384.
[91] Jiang S P, Zhang L, He H Q, et al. Synthesis and characterization of lanthanum silicate apatite by gel-casting route as electrolytes for solid oxide fuel cells[J]. Journal of Power Sources, 2009, 189: 972-981.
[92] Komori S, Kimura M, Watanabe K, et al. Compact Fuel Processor by Employing Monolithic Catalyst for 1 kW Class Residential Polymer Electrolyte Fuel Cells[J]. Journal of the Japan Petroleum Institute, 2011, 54: 52-5.
[93] Jung D W, Duncan K L, Wachsman E D. Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x-(WO3)y-(BiO1.5)1-x-y[J]. Acta Materialia, 2010, 58: 355-363.
[94] Wachsman E D, Jayaweera P, Jiang N, et al. Stable high conductivity ceria/bismuth oxide bilayered electrolytes[J]. Journal of the Electrochemical Society, 1997, 144: 233-236.
[95] Ahn J S, Pergolesi D, Camaratta M A, et al. High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells[J]. Electrochemistry Communications, 2009, 11: 1504-1507.
[96] Mori M, Yamamoto T, Itoh H, et al. Compatibility of alkaline earth metal (Mg, Ca, Sr)-doped lanthanum chromites as separators in planar-type high-temperature solid oxide fuel cells[J]. Journal of Materials Science, 1997, 32: 2423-2431.
[97] Fergus J W. Lanthanum chromite-based materials for solid oxide fuel cell interconnects[J]. Solid State Ionics, 2004, 171: 1-15.
[98] Sakai N, Yokokawa H, Horita T, et al. Lanthanum chromite-based interconnects as key materials for SOFC stack development[J]. International Journal of Applied Ceramic Technology, 2004, 1: 23-30.
[99] Liu Z G, Zheng Z R, Huang X Q, et al. The Pr4+ ions in Mg doped PrGaO3 perovskites[J]. Journal of Alloys and Compounds, 2004, 363: 60-62.
[100] Zhou X L, Deng F J, Zhu M X, et al. High performance composite interconnect La0.7Ca0.3CrO3/20 mol% ReO1.5 doped CeO2 (Re = Sm, Gd, Y) for solid oxide fuel cells[J]. Journal of Power Sources, 2007, 164: 293-299.
[101] Shen Y, Liu M N, He T M, et al. A potential interconnect material for solid oxide fuel cells: Nd0.75Ca0.25Cr0.98O3-δ[J]. Journal of Power Sources, 195: 977-983.
[102] Zhu W Z, Deevi S C. Development of interconnect materials for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2003, 348: 227-243.
[103] Fergus J W. Metallic interconnects for solid oxide fuel cells[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005, 397: 271-283.
[104] Holt A, Kofstad P. Electrical-conductivity and derect structure of Cr2O3. 2. Reduced temperatures (less than similar to 1000 oC)[J]. Solid State Ionics, 1994, 69: 137-143.
[105] Quadakkers W J, Hansel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments[J]. Materials and Corrosion-Werkstoffe Und Korrosion, 1998, 49: 252-257.
[106] Blum L, Buchkremer H P, Gross S, et al. Solid oxide fuel cell development at Forschungszentrum Juelich[J]. Fuel Cells, 2007, 7: 204-210.
[107] Yang Z G, Hardy J S, Walker M S, et al. Structure and conductivity of thermally grown scales on ferritic Fe-Cr-Mn steel for SOFC interconnect applications[J]. Journal of the Electrochemical Society, 2004, 151: A1825-A1831.
[108] Yao K S, Chen Y C, Chao C H, et al. Electrical enhancement of DMFC by Pt-M/C catalyst-assisted PVD[J]. Thin Solid Films, 2010, 518: 7225-7228.
[109] Hua B, Pu J, Zhang J F, et al. Ni-Mo-Cr alloy for interconnect applications in intermediate temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2009, 156: B93-B98.
[110] Chen X B, Hua B, Pu J, et al. Interaction between (La, Sr)MnO3 cathode and Ni-Mo-Cr metallic interconnect with suppressed chromium vaporization for solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34: 5737-5748.
[111] Fergus J W. Sealants for solid oxide fuel cells[J]. Journal of Power Sources, 2005, 147: 46-57.
[112] Eichler K, Solow G, Otschik P, et al. BAS (BaO center dot Al2O3 center dot SiO2)-glasses for high temperature applications[J]. Journal of the European Ceramic Society, 1999, 19: 1101-1104.
[113] Yang Z G, Stevenson J W, Meinhardt K D. Chemical interactions of barium-calcium-aluminosilicate-based sealing glasses with oxidation resistant alloys[J]. Solid State Ionics, 2003, 160: 213-225.
[114] Chen K F, Ai N, Lievens C, et al. Impact of volatile boron species on the microstructure and performance of nano-structured (Gd,Ce)O2 infiltrated (La,Sr)MnO3 cathodes of solid oxide fuel cells[J]. Electrochemistry Communications, 2012: in press.
[115] Duquette J, Petric A. Silver wire seal design for planar solid oxide fuel cell stack[J]. Journal of Power Sources, 2004, 137: 71-75.
[116] Bram M, Reckers S, Drinovac P, et al. Deformation behavior and leakage tests of alternate sealing materials for SOFC stacks[J]. Journal of Power Sources, 2004, 138: 111-119.
[117] Sang S B, Pu J, Jiang S P, et al. Prediction of H2 leak rate in mica-based seals of planar solid oxide fuel cells[J]. Journal of Power Sources, 2008, 182: 141-144.
[118] Chou Y S, Stevenson J W, Chick L A. Ultra-low leak rate of hybrid compressive mica seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 130-136.
[119] Chou Y S, Stevenson J W. Thermal cycling and degradation mechanisms of compressive mica-based seals for solid oxide fuel cells[J]. Journal of Power Sources, 2002, 112: 376-383.
[120] Khan T I, Al-Badri A. Reactive brazing of ceria to an ODS ferritic stainless steel[J]. Journal of Materials Science, 2003, 38: 2483-8.
[121] Weil K S. The state-of-the-art in sealing technology for solid oxide fuel cells[J]. Jom, 2006, 58: 37-44.
[122] Foger K, Love J G. Fifteen years of SOFC development in Australia[J]. Solid State Ionics, 2004, 174: 119-126.
[123] Jiang S P. Thin coating technologies and applications in high-temperature solid oxide fuel cells[M]// Zhang S. Handbook of Nanostructured Film Devices and Coatings. CRC Press, 2010: 155-187.
[124] Minh N Q. Solid oxide fuel cell technology-features and applications[J]. Solid State Ionics, 2004, 174: 271-277.
[125] Srivastava P K, Quach T, Duan Y Y, et al. Electrode supported solid oxide fuel cells: Electrolyte films prepared by DC magnetron sputtering[J]. Solid State Ionics, 1997, 99: 311-319.
[126] Kim J W, Virkar A V, Fung K Z, et al. Polarization effects in intermediate temperature, anode-supported solid oxide fuel cells[J]. Journal of the Electrochemical Society, 1999, 146: 69-78.
[127] Sarantaridis D, Atkinson A. Redox cycling of Ni-based solid oxide fuel cell anodes: A review[J]. Fuel Cells, 2007, 7: 246-58.
[128] Lang M, Henne R, Schaper S, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel cells[J]. Journal of Thermal Spray Technology, 2001, 10: 618-625.
[129] Brandon N P, Blake A, Corcoran D, et al. Development of metal supported solid oxide fuel cells for operation at 500-600 degrees C[J]. Journal of Fuel Cell Science and Technology, 2004, 1: 61-65.
[130] Bryant B, Renner C, Tokunaga Y, et al. Imaging oxygen defects and their motion at a manganite surface[J]. Nature Communications, 2011, 2.
[131] Cheng Z, Liu M L. Characterization of sulfur poisoning of Ni-YSZ anodes for solid oxide fuel cells using in situ Raman micro spectroscopy[J]. Solid State Ionics, 2007, 178: 925-935.


Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.