•  
  •  
 

Corresponding Author

Sheng-li CHEN(slchen@whu.edu.cn)

Abstract

Developing Pt-lean catalysts for oxygen reduction reaction (ORR) is the key for large-scale application of proton exchange membrane fuel cell (PEMFC). In this paper, we have proposed a multiple-descriptor strategy for screening efficient and durable ORR alloy catalysts of low Pt content. We argue that an ideal Pt-based bimetallic alloy catalyst for ORR should possess simultaneously negative alloy formation energy, negative surface segregation energy of Pt and a lower oxygen binding ability than pure Pt. By performing detailed DFT calculations on the thermodynamics, surface chemistry and electronic properties of various Pt-M alloys (M refers to non-precious transition metals in the periodic table), Pt-V,Pt-Fe,Pt-Co,Pt-Ni,Pt-Cu,Pt-Zn,Pt-Mo,Pt-W are predicted to have improved catalytic activity and durability for ORR, most of which have indeed been reported to have excellent ORR catalytic performance in the literature. It is suggested that the ORR performance of Pt-Zn and Pt-Mo systems deserve detailed theoretical and experimental investigations.

Graphical Abstract

Keywords

density functional theory calculations, catalyst design, Pt-based bimetallic alloys

Publication Date

2013-02-28

Online Available Date

2012-07-05

Revised Date

2012-06-30

Received Date

2012-06-04

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.