•  
  •  
 

Corresponding Author

Li NIU

Abstract

Electrochemical-surface plasmon resonance (EC-SPR) technique, developed in recent years, is a new technology which combines time-resolved surface plasmon resonance spectroscopy and electrochemical methods. Surface plasmon resonance (SPR) is a physical phenomenon generated by optical coupling using a metallic thin film and is very sensitive to optical analysis. The principles of SPR and EC-SPR are briefly introduced and the applications of the combination of SPR spectroscopy with electrochemical techniques are reviewed in this paper. This new technology has been widely used in such research areas as reaction dynamics, biochemical sensors, electrode/electrolyte interfaces, kinetic parameters and bimolecular interactions.

Graphical Abstract

Keywords

surface plasmon resonance, high time-resolved surface plasmon resonance, electrochemistry, electrochemical surface plasmon resonance

Publication Date

2013-02-28

Online Available Date

2012-03-29

Revised Date

2012-03-19

Received Date

2011-11-09

References

[1] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine, 1902, 4(21): 396-402.

[2] Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance[J]. Sensors Actuators, 1982-1983, 3: 79-88.

[3] Liedberg B, Nylander C. Lunstr?m I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors Actuators, 1983, 4: 299-304.

[4] Homola J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chemical Reviews, 2008, 108(2): 462-493.

[5] Shevchenko Y, Francis T J, Blair D A D, et al. In situ biosensing with a surface plasmon resonance fiber grating aptasensor[J]. Analytical Chemistry, 2011, 83(18): 7027-7034.

[6] Pelossof G, Tel-Vered R, Liu X Q, et al. Amplified surface plasmon resonance-based DNA biosensors, aptasensors, and Hg2+ sensors using hemin/G-quadruplexes and Au nanoparticles[J]. Chemistry-A European Journal, 2011, 17(32): 8904-8912.

[7] Damos F S, Luz R C S, Kubota L T. Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance[J]. Langmuir, 2004, 21(2): 602-609.

[8] Hu W, Lu Z, Liu Y, et al. In situ surface plasmon resonance investigation of the assembly process of multiwalled carbon nanotubes on an alkanethiol self-assembled monolayer for efficient protein immobilization and detection[J]. Langmuir, 2010, 26(11): 8386-8391.

[9] Forzani E S, Zhang H, Chen W, et al. Detection of heavy metal ions in drinking water using a high-resolution differential surface plasmon resonance sensor[J]. Environmental Science & Technology, 2004, 39(5): 1257-1262.

[10] Zhang Y, Xu M, Wang Y, et al. Studies of metal ion binding by apo-metallothioneins attached onto preformed self-assembled monolayers using a highly sensitive surface plasmon resonance spectrometer[J]. Sensor and Actuators B: Chemical 2007, 123(2): 784-792.

[11] Miao L(缪璐), Zhang S H(张水华), Liu Z M(刘仲明). Applications of SPR biosensor in food inspection[J]. Food Science and Technology(食品科技), 2006, 31(8): 266-268.

[12] Gordon J G, Swalen J D. The effect of thin organic films on the surface plasma resonance on gold[J]. Optics Communication, 1977, 22(3): 374-376.

[13] Gordon J G, Ernst S. Surface plasmons as a probe of the electrochemical interface[J]. Surface Science, 1980, 101(1/3): 499-506.

[14] Xin Y, Gao Y, Guo J, et al. Real-time detection of Cu2+ sequestration and release by immobilized apo-metallothioneins using SECM combined with SPR[J]. Biosensors and Bioelectronics, 2008, 24(3): 369-375.

[15] Wain A J, Do H N L, Mandal H S, et al. Influence of molecular dipole moment on the redox-induced reorganization of α-helical peptide self-assembled monolayers: An electrochemical SPR investigation[J]. The Journal of Physical Chemistry C, 2008, 112(37): 14513-14519.

[16] Sriwichai S, Baba A, Deng S, et al. Nanostructured ultrathin films of alternating sexithiophenes and electropolymerizable polycarbazole precursor layers investigated by electrochemical surface plasmon resonance (EC-SPR) spectroscopy[J]. Langmuir, 2008, 24(16): 9017-9023.

[17] Panta Y M, Liu J, Cheney M A, et al. Ultrasensitive detection of mercury (II) ions using electrochemical surface plasmon resonance with magnetohydrodynamic convection[J]. Journal of Colloid and Interface Science, 2009, 333(2): 485-490.

[18] Kurita R, Nakamoto K, Ueda A, et al. Comparison of electrochemical and surface plasmon resonance immunosensor responses on single thin film[J]. Electroanalysis, 2008, 20(20): 2241-2246.

[19] Wang J, Wang F, Zou X, et al. Surface plasmon resonance and electrochemistry for detection of small molecules using catalyzed deposition of metal ions on gold substrate[J]. Electrochemistry Communications, 2007, 9(2): 343-347.

[20] Norman L L, Badia A. Electrochemical Surface plasmon resonance investigation of dodecyl sulfate adsorption to electroactive self-assembled monolayers via ion-pairing interactions[J]. Langmuir, 2007, 23(20): 10198-10208.

[21] Davis B W, Linman M J, Linley K S, et al. Unobstructed electron transfer on porous polyelectrolyte nanostructures and its characterization by electrochemical surface plasmon resonance[J]. Electrochimica Acta, 2010, 55(15): 4468-4474.

[22] Choi C H, Hillier A C. Combined electrochemical surface plasmon resonance for angle spread imaging of multielement electrode arrays[J]. Analytical Chemistry, 2010, 82(14): 6293-6298.

[23] Taranekar P, Baba A, Park J Y, et al. Dendrimer precursors for nanomolar and picomolar real-time surface plasmon resonance/potentiometric chemical nerve agent sensing using electrochemically crosslinked ultrathin films[J]. Advanced Functional Materials, 2006, 16(15): 2000-2007.

[24] Wang J, Wang F, Xu Z, et al. Surface plasmon resonance and electrochemistry characterization of layer-by-layer self-assembled DNA and Zr4+ thin films, and their interaction with cytochrome c[J]. Talanta, 2007, 74(1): 104-109.

[25] Tang H, Wang Q, Xie Q, et al. Enzymatically biocatalytic precipitates amplified antibody-antigen interaction for super low level immunoassay: An investigation combined surface plasmon resonance with electrochemistry[J]. Biosensors and Bioelectronics, 2007, 23(5): 668-674.

[26] Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift fuer Naturforschung A-A Journal of Physical Sciences, 1968, 23A: 2135-2136.

[27] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift fuer Physik A: Hadrons and Nuclei, 1968, 216(4): 398-410.

[28] Sambles J R, Bradbery G W, Yang. F. Optical excitation of surface plasmons: an introduction[J]. Contemporary Physics, 1991, 32: 173-183.

[29] Smith E A, Corn R M. Surface plasmon resonance imaging as a tool to monitor biomolecular interactions in an array based format[J]. Applied Spectroscopy, 2003, 57(11): 320A-332A.

[30] Privett B J, Shin J H. Schoenfisch M H. Electrochemical sensors[J]. Analytical Chemistry, 2008, 80(12): 4499-4517.

[31] Zhang N, Schweiss R, Zong Y, et al. Electrochemical surface plasmon spectroscopy—Recent developments and applications[J]. Electrochimica Acta, 2007, 52(8): 2869-2875.

[32] Chao F, Costa M, Tadjeddine A, et al. Study on oxidation and electrochemical reduction of gold by ellipsometry with surface-plasmon excitation[J]. Journal of Electroanalytical Chemistry, 1977, 83(1): 65-86.

[33] K?tz R, Kolb D M, Sass J K. Electron density effects in surface plasmon excitation on silver and gold electrodes[J]. Surface Science, 1977, 69(1): 359-364.

[34] Tadjeddine A, Kolb D M, K?tz R. The study of single crystal electrode surfaces by surface plasmon excitation[J]. Surface Science, 1980, 101(1/3): 277-285.

[35] Wang S, Forzani E S, Tao N. Detection of heavy metal ions in water by high-resolution surface plasmon resonance spectroscopy combined with anodic stripping voltammetry[J]. Analytical Chemistry, 2007, 79(12): 4427-4432.

[36] Frasconi M, D?Annibale A, Favero G, et al. Ferrocenyl alkanethiols?thio β-cyclodextrin mixed self-assembled monolayers: Evidence of ferrocene electron shuttling through the β-cyclodextrin cavity[J]. Langmuir, 2009, 25(22): 12937-12944.

[37] Yao X, Yang M, Wang Y, et al. Study of the ferrocenylalkanethiol self-assembled monolayers by electrochemical surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 2007, 122(2): 351-356.

[38] Riskin M, Basnar B, Chegel V I, et al. Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes[J]. Journal of the American Chemical Society, 2006, 128(4): 1253-1260.

[39] Baba A, Mannen T, Ohdaira Y, et al. Detection of adrenaline on poly(3-aminobenzylamine) ultrathin film by electrochemical-surface plasmon resonance spectroscopy[J]. Langmuir, 2010, 26(23): 18476-18482.
[40] Sheridan A K, Ngamukot P, Bartlett P N, et al. Waveguide surface plasmon resonance sensing: Electrochemical desorption of alkane thiol monolayers[J]. Sensors and Actuators B: Chemical, 2006, 117(1): 253-260.
[41] Kang X, Jin Y, Cheng G, et al. In situ analysis of electropolymerization of aniline by combined electrochemistry and surface plasmon resonance[J]. Langmuir, 2002, 18(5): 1713-1718.
[42] Taranekar P, Fulghum T, Baba A, et al. Quantitative electrochemical and electrochromic behavior of terthiophene and carbazole containing conjugated polymer network film precursors: EC-QCM and EC-SPR[J]. Langmuir, 2007, 23(2): 908-917.
[43] Hu W, Li C M, Cui X, et al. In situ studies of protein adsorptions on poly(pyrrole-co-pyrrole propylic acid) film by electrochemical surface plasmon resonance[J]. Langmuir, 2007, 23(5): 2761-2767.
[44] Kang X, Jin Y, Cheng G, et al. Surface plasmon resonance studies on the electrochemical doping/dedoping processes of anions on polyaniline-modified electrode[J]. Langmuir, 2002, 18(26): 10305-10310.
[45] Damos F S, Luz R C S, Kubota L T. Investigations of ultrathin polypyrrole films: Formation and effects of doping/dedoping processes on its optical properties by electrochemical surface plasmon resonance (ESPR)[J]. Electrochimica Acta, 2006, 51(7): 1304-1312.
[46] Baba A, Park M K, Advincula R C, et al. Simultaneous surface plasmon optical and electrochemical investigation of layer-by-layer self-assembled conducting ultrathin polymer films[J]. Langmuir, 2002, 18(12): 4648-4652.
[47] Jin Y, Shao Y, Dong S. Direct electrochemistry and surface plasmon resonance characterization of alternate layer-by-layer self-sssembled DNA?myoglobin thin films on chemically modified gold surfaces[J]. Langmuir, 2003, 19(11): 4771-4777.
[48] Wang F, Wang J, Chen H, et al. Assembly process of CuHCF/MPA multilayers on gold nanoparticles modified electrode and characterization by electrochemical SPR[J]. Journal of Electroanalytical Chemistry, 2007, 600(2): 265-274.
[49] Gu H, Ng Z, Deivaraj T C, et al. Surface plasmon resonance spectroscopy and electrochemistry study of 4-nitro-1,2-phenylenediamine: a switchable redox polymer with nitro functional groups[J]. Langmuir, 2006, 22(8): 3929-3935.
[50] Baba A, Lübben J, Tamada K, et al. Optical properties of ultrathin poly(3,4-ethylenedioxythiophene) films at several doping levels studied by in situ electrochemical surface plasmon resonance spectroscopy[J]. Langmuir, 2003, 19(21): 9058-9064.
[51] Toyama S, Aoki K, Kato S. SPR observation of adsorption and desorption of water-soluble polymers on an Au surface[J]. Sensors and Actuators B: Chemical, 2005, 108(1/2): 903-909.
[52] Boussaad S, Pean J, Tao N J. High-resolution multiwavelength surface plasmon resonance spectroscopy for probing conformational and electronic changes in redox proteins[J]. Analytical Chemistry, 1999, 72(1): 222-226.
[53] Yao X, Wang J, Zhou F, et al. Quantification of redox-induced thickness changes of 11-ferrocenylundecanethiol self-assembled monolayers by electrochemical surface plasmon resonance[J]. The Journal of Physical Chemistry B, 2004, 108(22): 7206-7212.
[54] Raitman O A, Katz E, Bückmann A F, et al. Integration of polyaniline/poly(acrylic acid) films and redox enzymes on electrode supports: An in situ electrochemical/surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems[J]. Journal of the American Chemical Society, 2002, 124(22): 6487-6496.
[55] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization[J]. Journal of the American Chemical Society, 2000, 122(38): 9071-9077.
[56] Liu J, Tian S, Tiefenauer L, et al. Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene-streptavidin conjugates[J]. Analytical Chemistry, 2005, 77(9): 2756-2761.
[57] Dong H, Cao X, Li C M, et al. An in situ electrochemical surface plasmon resonance immunosensor with polypyrrole propylic acid film: comparison between SPR and electrochemical responses from polymer formation to protein immunosensing[J]. Biosensors and Bioelectronics, 2008, 23(7): 1055-1062.
[58] Wang L, Zhu C, Han L, et al. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene[J]. Chemical Communications, 2011, 47(27): 7794-7796.
[59] Hu W P, Chen S J, Huang K T, et al. A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film[J]. Biosensors and Bioelectronics, 2004, 19(11): 1465-1471.
[60] Iwasaki Y, Horiuchi T, Niwa O. Detection of electrochemical enzymatic reactions by surface plasmon resonance measurement[J]. Analytical Chemistry, 2001, 73(7): 1595-1598.
[61] Gestwicki J E, Hsieh H V, Pitner J B. Using receptor conformational change to detect low molecular weight analytes by surface plasmon resonance[J]. Analytical Chemistry, 2001, 73(23): 5732-5737.
[62] Shankaran D R, Gobi K V, Sakai T, et al. Surface plasmon resonance immunosensor for highly sensitive detection of 2,4,6-trinitrotoluene[J]. Biosensors and Bioelectronics, 2005, 20(9): 1750-1756.
[63] Baba A, Taranekar P, Ponnapati R R, et al. Electrochemical surface plasmon resonance and waveguide-enhanced glucose biosensing with N-alkylaminated polypyrrole/glucose oxidase multilayers[J]. ACS Applied Materials & Interfaces, 2010, 2(8): 2347-2354.
[64] Mao Y, Bao Y, Wang W, et al. Layer-by-layer assembled multilayer of graphene/Prussian blue toward simultaneous electrochemical and SPR detection of H2O2[J]. Talanta, 2011, 85(4): 2106-2112.
[65] Assiongbon K A, Roy D. Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques[J]. Surface Science, 2005, 594(1/3): 99-119.
[66] Wang J, Shao Y, Jin Y, et al. Electrochemical thinning of thicker gold film with qualified thickness for surface plasmon resonance sensing[J]. Analytical Chemistry, 2005, 77(17): 5760-5765.
[67] Zhai P, Guo J, Xiang J, et al. Electrochemical surface plasmon resonance spectroscopy at bilayered silver/gold films[J]. The Journal of Physical Chemistry C, 2006, 111(2): 981-986.
[68] Ku J R, Vidu R, Stroeve P. Mechanism of film growth of tellurium by electrochemical deposition in the presence and absence of cadmium ions[J]. The Journal of Physical Chemistry B, 2005, 109(46): 21779-21787.
[69] Kurita R, Yokota Y, Ueda A, et al. Electrochemical surface plasmon resonance measurement in a microliter volume flow cell for evaluating the affinity and catalytic activity of biomolecules[J]. Analytical Chemistry, 2007, 79(24): 9572-9576.
[70] Gupta G, Bhaskar A S B, Tripathi B K, et al. Supersensitive detection of T-2 toxin by the in situ synthesized π-conjugated molecularly imprinted nanopatterns. An in situ investigation by surface plasmon resonance combined with electrochemistry[J]. Biosensors and Bioelectronics, 2011, 26(5): 2534-2540.
[71] Nieciecka D, Krysinski P. Interactions of doxorubicin with self-assembled monolayer-modified electrodes: Electrochemical, surface plasmon resonance (SPR), and gravimetric studies[J]. Langmuir, 2011, 27(3): 1100-1107.
[72] Shan X, Patel U, Wang S, et al. Imaging local electrochemical current via surface plasmon resonance[J]. Science, 2010, 327(5971): 1363-1366.
[73] Shan X N, Wang S P, Wang W, et al. Plasmonic-based imaging of local square wave voltammetry[J]. Analytical Chemistry, 2011, 83(19): 7394-7399.
[74] Shan X N, Huang X P, Foley K J, et al. Measuring surface charge density and particle height using surface plasmon resonance technique[J]. Analytical Chemistry, 2010, 82(1): 234-240.
[75] Huang X P, Wang S P, Shan X N, et al. Flow-through electrochemical surface plasmon resonance detection of intermediate reaction products[J]. Journal of Electroanalytical Chemistry, 2010, 649(1/2): 37-41.
[76] Iwasaki Y, Horiuchi T, Morita M, et al. Electrochemical reaction of Fe(CN)63-/4-on gold electrodes analyzed by surface plasmon resonance[J]. Surface Science, 1999, 427-428: 195-198.
[77] Manesse M, Stambouli V, Boukherroub R, et al. Electrochemical impedance spectroscopy and surface plasmon resonance studies of DNA hybridization on gold/SiOx interfaces[J]. Analyst, 2008, 133(8): 1097-1103.
[78] Szunerits S, Knorr N, Calemczuk R, et al. New approach to writing and simultaneous reading of micropatterns: Combinating surface plasmon resonance imaging with scanning electrochemical microscopy (SECM)[J]. Langmuir, 2004, 20(21): 9236-9241.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.