Abstract
We report a novel method based on ion-exchange/electrodeposition (IEE) for constructing high Pt utilization porous electrodes. The electrode prepared using IEE was assessed by linear sweep voltammetry (LSV), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and single cell test. The preliminary results show that the undesired ion-exchange between Pt anion and surface functional group in carbon black can be eliminated through the electrode preparation process, and every Pt particle prepared by IEE is expected to be deposited on the three-phase reaction zone and thus can be fully utilized in fuel cell reactions. The Pt particle size, shape and distribution obtained by IEE can be controlled by modulating the IEE technique and cycles. The power output of the MEA employing a Pt/C electrode prepared by IEE with a Pt loading of 0.014 mgPt•cm-2 is equivalent to that employing a conventional Nafion-bonded Pt/C electrode with a Pt loading of 0.3 mgPt•cm-2.
Graphical Abstract
Keywords
fuel cells, ion-exchange/electrodeposition, Pt utilization
Publication Date
2013-02-28
Online Available Date
2012-07-05
Revised Date
2012-06-30
Received Date
2012-06-04
Recommended Citation
Si-guo CHEN, Wei DING, Xue-qiang QI, Li LI, Zi-hua DENG, Zi-dong WEI.
Porous Electrodes with High Pt Utilization Obtained by Ion-Exchange/Electrodeposition[J]. Journal of Electrochemistry,
2013
,
19(1): 53-58.
DOI: 10.61558/2993-074X.2097
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss1/4
References
[1] Maruyama J, Abe I. Structure control of a carbon-based noble-metal-free fuel cell cathode catalyst leading to high power output[J]. Chemical Communications, 2007, 27: 2879-2881.
[2] Wen Z H, Liu J, Li J H. Core/Shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells[J]. Advanced Materials, 2008, 20(4): 743-747.
[3] Wen Z H, Wang Q, Li J H. Template synthesis of aligned carbon nanotube arrays using glucose as a carbon source: Pt decoration of inner and outer nanotube surfaces for fuel-cell catalysts[J]. Advanced Functional Materials, 2008, 18(6): 959-964.
[4] Gamburzev S, Appleby A J. Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)[J]. Journal of Power Sources, 2002, 107(1): 5-12.
[5] Passalacqua E, Lufrano F, Squadrito G, et al. Nafion content in the catalyst layer of polymer electrolyte fuel cells: Effects on structure and performance[J]. Electrochimica Acta, 2001, 46(6): 799-805.
[6] Wei Z D, Ran H B, Liu X A, et al. Numerical analysis of Pt utilization in PEMFC catalyst layer using random cluster model[J]. Electrochimica Acta, 2006, 51(15): 3091-3096.
[7] Ioselevich A, Komyshev A, Lehnert W. Phase segregation of LixMn2O4 (0.6
[8] Kim H S, Subramanian N P, Popov B N. Preparation of PEM fuel cell electrodes using pulse electrodeposition[J]. Journal of Power Sources, 2004, 138(1/2): 14-24.
[9] Ye F, Chen L, Li J J, et al. Shape-controlled fabrication of platinum electrocatalyst by pulse electrodeposition[J]. Electrochemistry Communications, 2008, 10(3): 476-479.
[10] Wei Z D, Chen S G, Liu Y, et al. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC[J]. Journal of Physical Chemistry C, 2007, 111(42): 15456-15463.
[11] Talor E J, Anderson E B, Vilambi N R K. Preparation of high-platinum-utilization gas diffusion electrodes for proton exchange-membrane fuel cells[J]. Journal of the Electrochemical Society, 1992, 139(5): L45-L46.
[12] Xi J Y, Wang J S, Yu L H, et al. Facile approach to enhance the Pt utilization and CO-tolerance of Pt/C catalysts by physically mixing with transition-metal oxide nanoparticles[J]. Chemical Communications, 2007, 16: 1656-1658.
[13] Tang J M, Jensen K, Waje M, et al. High performance hydrogen fuel cells with ultralow Pt loading carbon nanotube thin film catalysts[J]. Journal of Physical Chemistry C, 2007, 111(48): 17901-17904.
[14] Xiao W, Jin X B, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds: A penetration model and its verification by electroreduction of solid AgCl[J]. Chemistry-A European Journal, 2007, 13(2): 604-612.
[15] Chen S G, Wei Z D, Li H, et al. High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition[J]. Chemical Communications, 2010, 46: 8782-8784.
[16] Lee J S, Seo J S, Han K K, Kim H S. Preparation of low Pt loading electrodes on Nafion (Na+)-bonded carbon layer with galvanostatic pulses for PEMFC application[J]. Journal of Power Sources, 2006, 163(1): 349-356
[17] 刘勇(Liu Y), 魏子栋(Wei Z D), 陈四国(Chen S G), et al. PEMFC electrodes platinized by modulated pulse current electrodeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(4): 521-525.
[18] Thompson S D, Jordan L R, Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2001, 46(10/11): 1657-1663.
[19] Shao Y Y, Yin G P, Wang J J, et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction[J]. Journal of Power Sources, 2006, 161(1): 47-53.
[20] Tian N, Zhou Z Y, Sun S G, et al. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825): 732-735.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons