Abstract
Based on the cell operating conditions, the material factors which influence the cell performance of SOFC including the chemical stability of materials at solid-gas interface in redox atmosphere, the diffusion and reaction between the interface of solid-solid materials, and degradation caused by the external chemical substances brought into the cells at triple phase boundary are mainly analyzed. Given that under the current state of the research it is urgent to explore the material factors on degradation of cell performance to meet demands in SOFC applications.
Graphical Abstract
Keywords
degradation, solid-gas interface, solid-solid interface, triple phase boundary
Publication Date
2013-04-28
Online Available Date
2012-02-10
Revised Date
2012-01-30
Received Date
2011-12-09
Recommended Citation
Ke-Qing GAO, Xiao-Tian LIU, Qing ZHAO, Li-Quan FAN, Yue-Ping XIONG.
Analysis of the Material Factors in the Degradation of SOFC Performance[J]. Journal of Electrochemistry,
2013
,
19(2): Article 13.
DOI: 10.61558/2993-074X.2942
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss2/13
References
[1] Takahashi T. Fuel Cells [M]. Dou F L (窦方亮), Xiong Y P (熊岳平), Tr. Fuel Cells [M]. Changchun: Jilin University Press (吉林大学出版社), 1994: 113.
[2] Singhal S C. Recent progress in tubular solid oxide fuel cells technology [M]// Electrochemical Society Series. Pennington, Electrochemical Society Inc, 1997, 97(40): 37-50.
[3] Sakai N, Yamaji K, Horit T, et al. Control factors of material degradation in SOFC operation [J]. Materia Japan, 2005, 44: 207-210.
[4] Yokokawa H, Sakai N, Horit T, et al. Electrolytes for solid oxide fuel cells [J]. MRS Bulletin, 2005, 30(8): 591-595.
[5] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity and efficiency of SOFC electrolytes [M]// Fuel Cell Seminar. Pennington, Electrochemical Society Inc, 2007, 12(1): 317-322.
[6] Xiong Y P, Yamaji K, Sakai N, et al. Electronic Conductivity of ZrO2-CeO2-YO1.5 solid solutions [J]. Journal of the Electrochemical Society, 2001, 12(148): 489-492.
[7] Xiong Y P, Yamaji K, Horita T, et al. Electronic conductivity of 20mol% Y2O1.5 doped CeO2 [J]. Journal of the Electrochemical Society, 2002, 11(149): 450-454.
[8] Xiong Y P, Yamaji K, Horita T, et al. Hole and electron conductivities of 20 mol%-ReO1.5 doped CeO2 (Re = Yb, Y, Gd, Sm, Nd, La). Journal of the Electrochemical Society, 2004, 3(151): A407-A412.
[9] Xiong Y P, Yamaji K, Kishimoto H, et al. Electronic conductivity of ZrO2 - CeO2 - YO1.5 solid solutions in a wide range of temperature and oxygen partial pressure [J]. Journal of the Electrochemical Society, 2006, 12(153): A2189-A2204.
[10] Sakai N, Xiong Y P, Yamaji K, et al. Transport properties of ceria-zirconia-yttria solid solutions {(CeO2)x(ZrO2)1-x}1-y(YO1.5)y (x = 0 ~ 1, y = 0.2, 0.35) [J]. Journal of Alloys and Compounds, 2006, 408-412: 503-506.
[11] Sakai N, Xiong Y P, Yamaji K, et al. Anomalous conductivity and microstructure in gadolinium doped ceria prepared from nano-sized powder [J]. Solid State Ionics, 2006, 177:2503-2507.
[12] Xie M, Zhan Z L, Liu X J, et al. Low-temperature ceria-electrolyte solid oxide fuel cells for efficient methanol oxidation [J]. Journal of Power Sources, 2011, 196(23): 9961-9964.
[13] Ishihara T, Mtsuda H, Takita Y. Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor [J]. Journal of the American chemical society, 1994, 116(9):3801-3803.
[14] Ishihara T, Mtsuda H, Takita Y. Effects of rare-earth cations doped for La site on the oxide ionic conductor of LaGaO3-based perovskite-type oxide [J]. Solid State Ionics, 1995, 79: 147-151.
[15] Murakami N, Nakamura S, Sato M, et al. R&D intermediate-temperature SOFC using LaGaO3-based oxide as electrolyte (6) [C]// Extended Abstracts of the 15th symposium on SOFC in Japan, Tokyo, The SOFC Society of Japan, 2006: 103A.
[16] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity of doped lanthanum gallate electrolytes [C]// Solid state ionics: The science and technology of ions in motion, Singapore, World Scientific Publishing Co. Pte. Ltd., 2004: 253-260.
[17] Yamaji K, Xiong Y P, Kishimoto H, et al. Electronic conductivity of La0.8Sr0.2Ga0.8Mg0.2-xCoxO3-δ electrolytes (II) [C]// Solid state ionics: Advanced materials for emerging technologies, Singapore, World Scientific Publishing Co. Pte. Ltd., 2006: 252-259.
[18] Han M F, Peng S P, Wang Z L, et al. Properties of Fe-Cr based alloys as interconnects in a solid oxide fuel cell [J]. Journal of Power Sources, 2007, 164(1): 278-283.
[19] Horita T, Xiong Y P, Kishimoto H, et al. Oxidation behavior of Fe-Cr and Ni-Cr based alloy interconnects in CH4-H2O for solid oxide fuel cells [J]. Journal of the Electrochemical Society, 2005, 152(11): A2193-A2198.
[20] Horita T, Xiong Y P, Yamaji K, et al. Stability of Fe-Cr alloy interconnects under CH4-H2O atmosphere for SOFCs [J]. Physical Chemistry Chemical Physics, 2003, 5(11): 2253-2256.
[21] Uehara T, Yasuda N, Ohno T, et al. Improvement of oxidation resistance of Fe-Cr ferritic alloy sheets for SOFC interconnects [J]. Electrochemistry, 2009, 77(2): 131-133.
[22] Yokokawa H, Sakai N, Kawada T, et al. Thermodynamic analysis on relation between nonstoichiometry of LaMnO3 perovskites and their reactivity with ZrO2 [J]. Denki Kagaku, 1989, 57(8): 829-836.
[23]. H. Yokokawa. Generalized chemical potential diagram-its fundamentals and applications part four-extension to multicomponents systems [J]. Materia Japan, 1996, 35: 1345-1351.
[24] Huang K Q, Feng M, Goodenough J B, et al. Characterization of Sr-Doped LaMnO3 and LaCoO3 as cathode materials for a doped LaGaO3 ceramic fuel cell [J]. Journal of the Electrochemical Society, 1996,143(12): 3630-3636.
[25] Huang K Q, Goodenough J B. A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer [J]. Journal of Alloys and Compounds, 2000, 303-304: 454-464.
[26] Liu R Z (刘仁柱), Huang B (黄波), Ye X F (叶晓峰), et al. Fabrication and performance of Ni-ScSZ Cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC [J]. Journal of Electrochemistry (电化学), 2007, 13(1): 50-56.
[27] Yokokawa H, Tu H Y, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability [J]. Journal of Power Sources, 2008, 182(2): 400-412.
[28] Sasaki K. Chemical Durability of SOFCs [C]// Extended abstracts of the 17th Symposium on SOFC in Japan. Tokyo, 2008: 34-37.
[29] Sasaki K, Susuki K, Iyoshi A, et al. H2S poisoning of solid oxide fuel cells [J]. Journal of the Electrochemical Society, 2006, 153(11):A2023-A2029.
[30] Liu R R, Kim S H, Taniguchi S, et al. Influence of water vapor on long-term performance and accelerated degradation. Journal of Power Sources, 2001, 1967, 17(S1): 7090-7096.
[31] Kishimoto H, Xiong Y P, Yamaji K, et al. Stability of Ni base anode for direct hydrocarbon SOFCs [J]. Journal of Chemical Engineering of Japan, 2007, 13(40): 1178-1182.
[32] Yamaji K, Xiong Y P, Kishimoto H, et al. Study of accelerating tests methods on durability of SOFCs: effect of variation in driving force of reactions and/or in mass transfer of impurities [C]// Extended Abstracts of the 17th Symposium on SOFC in Japan, Tokyo, 2008: 30-33.
[33] Xiong Y P, Yamaji K, Kishimoto H, et al. Deposition of platinum particles at LSM/ScSZ/air three-phase boundaries using a platinum current collector [J]. Electrochemical and Solid-State Letters, 2009, 12(3): B31-B33.
[34] Xiong Y P, Yamaji K, Horita T, et al. Sulfur poisoning of SOFC cathodes [J]. Journal of the Electrochemical Society, 2009, 5(156): B588-B592.
[35] Cheng M J. Investigation on new cathodes for lowering operation temperature [C]// Asia-European Workshop on SOFC, 2008, Dalian, China.
[36] Wang S R, Introduction of planar SOFC research activities in SICCAS [C]//, Asia-European Workshop on SOFC, 2008, Dalian, China.
[37] Eguchi K. Report on 2008 Korea-Japan-China SOFC Symposium [J], The Jo urnal of Fuel Cell Technology (Japan) 2008, 3(8): 133-134.