•  
  •  
 

Corresponding Author

Chun-an MA(science@zjut.edu.cn)

Abstract

The electrochemical oxidations of Ce3+ to Ce4+ on Pt rotating disk electrode (RDE) in both sulfuric acid and methanesulfonic acid (MSA) solutions were studied by using cyclic voltammetry and linear sweep voltammetry. The complexing behaviors of Ce3+/Ce4+ were preliminarily probed and the exchange current density, diffusion coefficient, as well as reaction rate constant were obtained from Butler-Volmer equation. The activation energies of Ce3+ oxidation on Pt electrode in two types of acidic media, obtained from Arrhenius equation, were also compared. The results indicate that Ce3+ can be oxidized to Ce4+ much easier in sulfuric acid than in MSA solutions. The equilibrium potential in sulfuric acid solutions moves negatively due to the predominant complexation of Ce4+, while that in MSA solutions positively because of the predominant complexation of Ce3+, The larger values of activation energy for the oxidation of Ce3+ to Ce4+ on Pt electrode in sulfuric acid solutions suggest that the oxidation of Ce3+ occurs more readily and the electro-oxidation of cerous sulfate is more susceptible to temperature.

Graphical Abstract

Keywords

exchange current density, diffusion coefficient, rate constant, anode oxidation, activation energy

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2013-04-28

Online Available Date

2012-03-30

Revised Date

2012-03-21

Received Date

2012-02-14

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.