Abstract
The influences of cinnamic acid (CIN) on the mechanism of Zn deposition and nucleation kinetics onto glassy-carbon electrode were studied by cyclic voltammetry (CV) and chronoamperometry (CA). The results revealed that the zinc reduction took place via Zn2+ + 2e → Zn in the presence of CIN, but the kinetics of zinc deposition was changed and the formation rate of zinc nuclei was accelerated. In the absence of CIN, the mechanism of zinc nucleation followed the 3D-instantaneous diffusion-controlled nucleation, while the 3D-progressive diffusion-controlled nucleation in the presence of CIN. The addition of CIN reduced the nucleation rate, but increased the number of active sites as compared with those obtained without CIN.
Keywords
zinc elecreodeposition, cinnamic acid, nucleation and growth, chronoamperometry
Publication Date
2013-06-28
Online Available Date
2012-05-31
Revised Date
2012-05-24
Received Date
2012-04-18
Recommended Citation
Kai LI, Shen CHEN, Shen-na LIU, Bi-sang CHEN, Heng LIN, Guo-liang CHEN, Qing-xiang WANG.
Influences of the Cinnamic Acid on Zinc Electrodeposition at Glassy-Carbon Electrode[J]. Journal of Electrochemistry,
2013
,
19(3): Article 12.
DOI: 10.61558/2993-074X.2959
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss3/12
References
[1] Barcelo G, Sarret M, Muller C, et al. Corrosion resistance and mechanical properties of zinc electrocoatings[J]. Electrochimica Acta, 1998, 43(1): 13-20.
[2] Rajendran S, Bharanti S, Krishna C. Electrodeposition of zinc-cobalt alloy from cyanide-free alkaline plating bath[J]. Plating and Surface Finishing, 1997, 84(10): 53-57.
[3] Hosny A Y, Rofei M E, Ramadan T A, et al. Corrosion resistance of zinc coatings produced from a sulfate bath [J]. Metal Finishing, 1995, 93(11): 55-59.
[4] Bozzini B, Accardi V, Cavalloti P L, et al. Electrodeposition and plastic behavior of low-manganese zinc-manganese alloy coatings for automotive applications[J]. Metal Finishing, 1999, 97(5): 33-42.
[5] Raeissi K, Saatchi A, Golozar M A. Effect of nucleation mode on the morphology and texture of electrodeposited zinc[J]. Journal of Applied Electrochemistry, 2003, 33(7): 635 -642.
[6] Yu J, Wang L, Su L, Ai X, et al. Temperature effects on the electrodeposition of zinc[J]. Journal of The Electrochemical Society, 2003, 150(1): C19-C23.
[7] Trejo G, Ortega B R, Meas Y, et al. Nucleation and growth of zinc from chloride concentrated solutions[J]. Journal of The Electrochemical Society, 1998, 145(12): 4090-4097.
[8] Sanchez Cruz M, Alonso F, Palacios J M. Nucleation and growth of zinc electrodeposits on a polycrystalline zinc electrode in the presence of chloride ions[J]. Journal of Applied Electrochemistry, 1993, 23(4): 364-370.
[9] Yu J, Yang H, Ai X, et al. Effects of anions on the zinc electrodeposition onto glassy-carbon electrode[J]. Russian Journal of Electrochemistry, 2002, 38(3):363-367.
[10] Aleksandar R D, Miomir G P. Deposition of zinc of foreign substrates[J]. Electrochimica Acta, 1982, 27(11): 1539-1549.
[11] Song K D, Kim K B, Han S H, et al. Effect of Additives on hydrogen evolution and absorption during Zn electrodeposition investigated by EQCM[J]. Electrochemical and Solid-State Letters, 2004, 7(2): C20-C24.
[12] Mockute D, Bernotiene G. Behaviour of benzylidene acetone during zinc electrodeposition in weakly acid solution containing a nonionic surfactant and/or carboxylic acid[J]. Journal of Applied Electrochemistry, 1997, 27(6): 691-694.
[13] Yu J, Chen Y, Yang H, Huang Q. The influences of organic additives on zinc electrocrystallization from KCl solutions[J]. Journal of The Electrochemical Society, 1999, 146(5): 1789-1793.
[14] Michailova E, Peykova M, Stoychev D, et al. On the role of surface active agents in the nucleation step of metal electrodeposition on a foreign substrate[J]. Journal of Electroanalytical Chemistry, 1994, 366(1/2): 195-202.
[15] Simanavicus L, Stakenas A, Sarkis A. The initial stages of aluminum and zinc electrodeposition from an aluminum electrolyte containing quaternary aralkylammonium compound[J]. Electrochimica Acta, 1997, 42 (10): 1581-1586.
[16] Michailova E, Vitanova I, Stoychev D, et al. Initial stages of copper electrodeposition in the presence of organic additives[J]. Electrochimica Acta, 1993, 38(16): 2455-2458.
[17] Lee J Y, Kim J W, Lee M K, et al. Effects of organic additives on initial stages of zinc electroplating on iron[J]. Journal of The Electrochemical Society, 2004, 151(1): C25-C31.
[18] Mackinnon D J, Brannen J M. Evaluation of organic additives as levelling agents for zinc electrowinning from chloride electrolytes[J]. Journal of Applied Electrochemistry, 1982, 12(1): 21-31.
[19] Alvarez A E, Salinas D R. Nucleation and growth of Zn on HOPG in the presence of gelatine as additive[J]. Journal of Electroanalytical Chemistry, 2004, 566(2), 393-400.
[20] Trejo G, Ruiz H, Ortega B R, et al. Influence of polyethoxylated additives on zinc electrodeposition fromacidic solutions[J]. Journal of Applied Electrochemistry, 2001, 31(6): 685-692.
[21] Khorsand S, Raeissi K, Golozar M A. Effect of oxalate anions on zinc electrodeposition from an acidic sulphate bath[J]. Journal of The Electrochemical Society, 2011, 158(6): D377-D383.
[22] Ballesteros J C, DÃaz-Arista P, Meas Y, et al. Zinc electrodeposition in the presence of polyethylene glycol 20000 [J]. Electrochimica Acta, 2007, 52(11): 3686-3696.
[23] Li M C, Jiang L L, Zhang W Q, et al. Electrodeposition of nanocrystalline zinc from acidic sulfate solutions containing thiourea and benzalacetone as additives[J]. Journal of Solid State Electrochemistry, 2007, 11(4): 549-553.
[24] Oliveira E M, Carlos I. A. Voltammetric and morphological characterization of zinc electrodeposition from acid electrolytes containing boric-polyalcohol complexes[J]. Journal of Applied Electrochemistry, 2008, 38(9): 1203-1210.
[25] Kim S J, Kim H T, Parka S M. Effects of o-vanillin as a brightener on zinc electrodeposition at iron electrodes[J]. Journal of the Electrochemical Society, 2004, 151(12): C850-C854.
[26] Zhang Q, Hua Y. Effects of 1-butyl-3-methylimidazolium hydrogen sulfate-[BMIM]HSO4 on zinc electrodeposition from acidic sulfate electrolyte[J]. Journal of Applied Electrochemistry, 2009, 39(12): 261-267.
[27] Luis H, Clara H, MarÃa G. Zinc electrodeposition from chloride solutions onto glassy carbon electrode[J]. Journal of the Mexican Chemical Society, 2009, 53(4): 243-247.
[28] Gomes A, Da-Silva-Pereira M I. Zn electrodeposition in the presence of surfactants Part I. Voltammetric and structural studies[J]. Electrochimica Acta, 2006, 52(3): 863-871.
[29] Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. Electrochimica Acta, 1983, 28(7): 917-923.
[30] Mo Y, Huang Q, Li W, et al. Effect of sodium benzoate on zinc electrodeposition in chloride solution[J]. Journal of Applied Electrochemistry, 2011, 41(7): 859-865.
[31] Morón L E, Meas Y, Ortega B R, et al. Effect of a poly(ethylene glycol)(MW 200)/benzylideneacetone additive mixture on Zn electrodeposition in an acid chloride bath[J]. International Journal of Electrochemical Science, 2009, 4(12): 1735-1753.
[32] Gunawardena G, Hills G, Montenegro I, Shcarfcker B. Electrochemical nucleation: PartI. General considerations [J]. Journal of Electroanalytical Chemistry, 1982, 138(2): 225-239.
[33] Gunawardena G, Hills G, Montenegro I. Electrochemical nucleation: Part V. Electrodeposition of cadmium onto vitreous carbon and tin oxide electrodes.[J]. Journal of Electroanalytical Chemistry, 1985, 184(2): 371-389
[34] Abyaneh M Y. Modelling diffusion controlled electrocrystallisation processes[J]. Journal of Electroanalytical Chemistry, 2006, 586(2): 196-203.
[35] Alvarez A E, Salinas D R. Nucleation and growth of Zn on HOPG in the presence of gelatine as additive[J]. Journal of Electroanalytical Chemistry, 2004, 566(2): 393-400.
[36] Despic A R, Pavlovic G. Deposition of zinc of foreign substrates[J]. Electrochimica Acta, 1982, 27(11): 1539-1549.
[37] Breen J M, Gannon E. Electrodeposition of zinc on glassy carbon from ZnCl2 and ZnBr2 electrolytes[J]. Journal of The Electrochemical Society, 1983, 130(8): 1667-1670.
[38] Scharifker B R, Mostany J. Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site/2): 13-23.[J]. Journal of Electroanalytical Chemistry, 1984, 177(1
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons