Abstract
The surface of tungsten carbide (WC) was treated by potassium hydroxide (KOH) at different pH values for different time. The PtRu/WC composite was prepared by microwave-assisted polyol method. The phase structure of PtRu/WC composites were characterized by XRD. The electrocatalytic activity was tested by cyclic voltammetry and chronoamperometry. The results indicated that with different pH treatments WC became more readily supported on PtRu. When treating WC in KOH at pH = 14, PtRu exhibited the best degree of crystallinity on WC surface, leading to the highest electrocatalytic activity of PtRu/WC. Moreover, the optimized activity of PtRu/WC towards methanol oxidation was obtained by pretreating WC in KOH for 5 h.
Graphical Abstract
Keywords
pretreatment, PtRu, tungsten carbide, catalytic performance, stability
Publication Date
2013-08-28
Online Available Date
2012-12-29
Revised Date
2012-12-24
Received Date
2012-07-10
Recommended Citation
Xiao-ling LANG, Mei-qin SHI, Ye-kun JIANG, Chun-an MA.
Influence of Pretreatment on Electrocatalytic Property for Methanol Oxidation of PtRu/WC[J]. Journal of Electrochemistry,
2013
,
19(4): 350-354.
DOI: 10.61558/2993-074X.2120
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss4/7
References
[1] Arico A S, Srinivasan S, Antonucci V. DMFCs: From fundamental aspects to technology development[J]. Fuel Cell, 2001, 1(2): 133-161.
[2] Gu Y J, Wong W T. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation[J]. Langmuir, 2006, 22(26): 11447-11452.
[3] Ma C A(马淳安), Yu B(俞彬), Shi M Q(施梅勤), et al. Preparation and electrocatalytic activity of the Pt/WC/TiO2 composite[J]. Journal of Electrochemistry (电化学), 2011, 17(2): 149-154.
[4] Jovanovic V M, Terzic S, Tripkovic A V, et al. The Effect of electrochemically treated glassy carbon on the activity of supported Pt catalyst in methanol oxidation[J]. Electrochemistry Communications, 2004, 6(12): 1254-1258.
[5] Xu W L, Lu T H, Liu C P, et al. Nanostructured PtRu/C as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell[J]. Journal of Physical Chemistry B, 2005, 109(30): 14325-14330.
[6] Hamnett A. Mechanism and electrocatalysis in the direct methanol fuel cell[J]. Catalysis Today, 1997, 38(4): 445-457.
[7] Wasmus S, Kver A. Methanol oxidation and direct methanol fuel cells: A selective review[J]. Journal of Electroanalytical Chemistry, 1999, 461(1): 14-31.
[8] Yao Y L, Ding Y, Ye L S, et al. Two-step pyrolysis process to synthesize highly dispersed Pt-Ru/carbon nanotube catalysts for methanol electrooxidation[J]. Carbon, 2006, 44(1): 61-66.
[9] Chang H L, Chi W, Dong I K, et al. Electrooxidation of methanol on Pt-Ru catalysts supported by basal plane graphite in phosphoric acid solution[J]. Journal of Power Sources, 2000, 86(1/2): 478-481.
[10] Xue X Z, Lua T H, Liu C P, et al. Novel preparation method of Pt-Ru/C catalyst using imidazolium ionic liquid as solvent[J]. Electrochimica Acta, 2005, 50(16/17): 3470-3478.
[11] Min K J, Hideo D, Ki R L, et al. CO tolerant Pt/WC methanol electro-oxidation catalyst[J]. Electrochemistry Communications, 2007, 9(11): 2692-2695.
[12] Ma C A, Brandon N, Li G H. Preparation and formation mechanism of hollow microspherical tungsten carbide with mesoporosity[J]. Journal of Physical Chemistry C, 2007, 111(26): 9504-9508.
[13] Raman G, Jae S L. Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation[J]. Angewandte Chemie International Edition, 2005, 44: 6557-6560.
[14] Ma C A, Sheng J F, Nigel B, et al. Preparation of tungsten carbide-supported nano-platinum catalyst and its electrocatalytic activity for hydrogen evolution[J]. International Journal of Hydrogen Energy, 2007, 32(14): 2824-2829.
[15] Houston J E, Laramore G E, Park R L. Surface electronic properties of tungsten, tungsten carbide, and platinum[J]. Science, 1974, 185: 258-260.
[16] Mcintyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide[J]. Jounal of Power Sources, 2002, 107(1): 67-73.
[17] Zhao Z Z, Fang X, Li Y L. The origin of the high performance of tungsten carbides/carbon nanotubes supported Pt catalysts for methanol electrooxidation[J]. Electrochemistry Communication, 2009, 11(2): 290-293.
[18] Raman G S, Dong J H, Jae S L. Platinized mesoporous tungsten carbide for electrochemical methanol oxidation[J]. Electrochemistry Communication, 2007, 9(10): 2576-2579.
[19] Min K J, Ki R L, Won S L. Investigation of Pt/WC/C catalyst for methanol electro-oxidation and oxygen electro-reduction[J]. Jounal of Power Sources, 2008, 185: 927-931.
[20] Shen P K, Yin S B, Li Z H, et al. Preparation and performance of nanosized tungsten carbides for electrocatalysis[J]. Electrochimica Acta, 2010, 55: 7969–7974.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons