Abstract
The formation of natural oxide films on polycrystalline zinc surface, the growth of natural oxide films in different atmospheres, as well as the electrochemical process of metal zinc in alkaline carbonate solution, studied recently by using spectroscopic ellipsometry in our group, are introduced. The objective of this paper is to outline that the optical, electrical properties, the change and growth kinetics of zinc metal oxide film on the surface can be investigated by in-situ and ex-situ ellipsometry, which makes significant sense to evaluate the overall performance of zinc oxide layer.
Graphical Abstract
Keywords
spectroscopic ellipsometry, zinc, native oxide films;optical property;electronic property, growth kinetics
Publication Date
2013-10-28
Online Available Date
2013-04-22
Revised Date
2013-04-22
Received Date
2013-02-21
Recommended Citation
Juan ZUO, Ying CHEN, Chang-jian LIN, Andreas ERBE.
An Investigation of Thin Films Formed on Zinc by Spectroscopic Ellipsometry[J]. Journal of Electrochemistry,
2013
,
19(5): 409-417.
DOI: 10.61558/2993-074X.2130
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol19/iss5/3
References
[1] Landolt D. Corrosion and surface chemistry of metals[M]. Lausanne: EPFL Press, 2007.
[2] Zhang X G. Corrosion and electrochemistry of zinc[M]. New York: Plenum Press, 1996.
[3] Delplancke J L, Winand R. Galvanostatic anodization of titanium I. Structures and compositions of the anodic films[J]. Electrochimica Acta, 1988, 33(11): 1539-1549.
[4] Kannangara D C W, Conway B E. Zinc oxidation and redeposition processes in aqueous alkali and carbonate solutions: I. pH and carbonate ion effects in film formation and dissolution[J]. Journal of The Electrochemical Society, 1987, 134(4): 894-906.
[5] Conway B E, Kannangara D C W. Zinc oxidation and redeposition processes in aqueous alkali and carbonate solutions: II. Distinction Between Dissolution and Oxide Film Formation Processes[J]. Journal of The Electrochemical Society, 1987, 134(4): 906-918.
[6] Delplancke J L, Winand R. Galvanostatic anodization of titanium II. Reactions efficiencies and electrochemical behaviour model[J]. Electrochimica Acta, 1988, 33(11): 1551-1559.
[7] Schultze J W, Hassel A W. Encyclopedia of electrochemistry[M]. Weinheim: Wiley-VCH,2007.
[8] Shang X L, Zhang B, Han E-H, et al. Effect of small addition of Mn on the passivation of Zn in 0.1 M NaOH solution[J]. Electrochimica Acta, 2011, 56(3): 1417-1425.
[9] Tompkins H G, McGahan W A. Spectroscopic ellipsometry and reflectometry[M]. New York: John Wiley & Sons, Inc., 1999.
[10] Jellison G E, Boatner L A. Optical functions of uniaxial ZnO determined by generalized ellipsometry[J]. Physical Review B, 1998, 58(7): 3586-3589.
[11] Washington P L, Ong H C, Dai J Y, et al. Determination of the optical constants of zinc oxide thin films by spectroscopic ellipsometry[J]. Applied Physics Letters, 1998, 72(25): 3261-3263.
[12] Hamnett A. Ellipsometric techniques for the characterisation of electrode surfaces[J]. Journal of the Chemical Society, Faraday Transactions, 1993, 89(11): 1593-1607.
[13] Lu Z, Macdonald D D. Transient growth and thinning of the barrier oxide layer on iron measured by real-time spectroscopic ellipsometry[J]. Electrochimica Acta, 2008, 53(26): 7696-7702.
[14] Sloppy J D, Podraza N J, Dickey E C, et al. Complex dielectric functions of anodic bi-layer tantalum oxide[J]. Electrochimica Acta, 2010, 55(28): 8751-8757.
[15] Hayfield P C S. Ellipsometry as an aid in studying metallic corrosion problems[J]. Surface Science, 1976, 56(0): 488-507.
[16] Lopez Teijelo M, Zerbino J O, Vilche J R, et al. Ellipsometry of silver electrodes in base solutions under different potential controlled perturbation conditions[J]. Electrochimica Acta, 1984, 29(7): 939-946.
[17] Buchholz J C. Surface electronic structure for the initial stages of electrochemical oxidation of zinc[J]. Surface Science, 1980, 101(1/3): 146-154.
[18] Sullivan M G, Schnyder B, Bartsch M, et al. Electrochemically modified glassy carbon for capacitor electrodes characterization of thick anodic layers by cyclic voltammetry, Differential electrochemical mass spectrometry, spectroscopic ellipsometry, X-ray photoelectron spectroscopy, FTIR, and AFM[J]. Journal of The Electrochemical Society, 2000, 147(7): 2636-2643.
[19] Kong F, Kostecki R, McLarnon F, et al, Spectroscopic ellipsometry of electrochemical precipitation and oxidation of nickel hydroxide films[J]. Thin Solid Films, 1998, 313(14): 775-780.
[20] Zollner S. Model dielectric functions for native oxides on compound semiconductors[J]. Applied Physics Letters, 1993, 63(18): 2523-2524.
[21] Lide D R. Handbook of chemistry and physics[M]. Boca Raton: CRC Press, 2009.
[22] Zuo J. Deposition of Ag nanostructures on TiO2 thin films by RF magnetron sputtering[J]. Applied Surface Science, 2010, 256(23): 7096-7101.
[23] Zuo J, Erbe A. Optical and electronic properties of native zinc oxide films on polycrystalline Zn[J]. Physical Chemistry Chemical Physics, 2010, 12(37): 11467-11476.
[24] Chen Y, Schneider P, Erbe A. Investigation of native oxide growth on zinc in different atmospheres by spectroscopic ellipsometry[J]. Physica Status Solidi A-Applications and Materials Science, 2012, 209(5): 846-853.
[25] Chen Y, Erbe A. In situ spectroscopic ellipsometry during electrochemical treatment of zinc in alkaline carbonate electrolyte[J]. Surface Science, 2013, 607(1): 39-46.
[26] Chen Y, Schneider P, Liu B J, et al. Electronic structure and morphology of dark oxide on zinc generated by electrochemical treatment[J]. Physical Chemistry Chemical Physics, 2013, 15(25): 9812-9822.
Included in
Analytical Chemistry Commons, Materials Chemistry Commons, Nanoscience and Nanotechnology Commons, Physical Chemistry Commons