•  
  •  
 

Corresponding Author

Yan-na NULI(nlyn@sjtu.edu.cn)

Abstract

Three kinds of ethylenethiourea-Grignard reagent/THF electrolytes were prepared by reacting ethylenethiourea with different Grignard reagents such as EtMgBr/THF, PhMgBr/THF and PhMgCl/THF. Cyclic voltammetry tests on Pt disk electrode show that the electrolytes have good performance of magnesium deposition-dissolution as Grignard reagents and higher anodic stabilities than Grignard reagents. The oxidative decomposition potential of ethylenethiourea-PhMgBr/THF on Pt electrode can reach 2.3 V (vs. Mg/Mg2+). The conductivity of ethylenethiourea-PhMgBr/THF electrolyte initially increases and then decreases with the increase of the concentration and reaches to the highest value of 615 μS·cm-1 at 0.9 mol·L-1. The comparison in cyclic voltammograms of 0.9 mol·L-1 ethlenethiourea-PhMgBr/THF electrolyte on Pt, Ni, Cu and Al electrodes demonstrates that the oxidative decomposition potential on Ni electrode is the highest (2.4 V (vs. Mg/Mg2+)). Constant-current discharge and charge tests of coin cells further show that the magnesium deposition-dissolution potential on Ni substrate is low and the stable cycle efficiency can reach 92%. For ethlenethiourea-PhMgBr/THF electrolyte, nickel is suitable to be used as a practical current collector.

Graphical Abstract

Keywords

ethylenethiourea, Grignard reagent, electrolytes, rechargeable magnesium batteries

Publication Date

2014-02-25

Online Available Date

2014-02-24

Revised Date

2013-01-21

Received Date

2012-09-30

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.