Corresponding Author

Yan-na NULI(nlyn@sjtu.edu.cn)


Three kinds of ethylenethiourea-Grignard reagent/THF electrolytes were prepared by reacting ethylenethiourea with different Grignard reagents such as EtMgBr/THF, PhMgBr/THF and PhMgCl/THF. Cyclic voltammetry tests on Pt disk electrode show that the electrolytes have good performance of magnesium deposition-dissolution as Grignard reagents and higher anodic stabilities than Grignard reagents. The oxidative decomposition potential of ethylenethiourea-PhMgBr/THF on Pt electrode can reach 2.3 V (vs. Mg/Mg2+). The conductivity of ethylenethiourea-PhMgBr/THF electrolyte initially increases and then decreases with the increase of the concentration and reaches to the highest value of 615 μS·cm-1 at 0.9 mol·L-1. The comparison in cyclic voltammograms of 0.9 mol·L-1 ethlenethiourea-PhMgBr/THF electrolyte on Pt, Ni, Cu and Al electrodes demonstrates that the oxidative decomposition potential on Ni electrode is the highest (2.4 V (vs. Mg/Mg2+)). Constant-current discharge and charge tests of coin cells further show that the magnesium deposition-dissolution potential on Ni substrate is low and the stable cycle efficiency can reach 92%. For ethlenethiourea-PhMgBr/THF electrolyte, nickel is suitable to be used as a practical current collector.

Graphical Abstract


ethylenethiourea, Grignard reagent, electrolytes, rechargeable magnesium batteries

Publication Date


Online Available Date


Revised Date


Received Date



Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium applications to energy storage[J]. Journal of the Electrochemical Society, 1990, 137(3): 775-780.
Aurbach D, Lu Z, Schechter A, et al. Prototype systems for rechargeable magnesium batteries[J]. Nature, 2000, 407: 724-727.
Yuan H T (袁华堂), Wu F (吴峰), Wu X L (武绪丽), et al. The study and development of rechargeable magnesium battery[J]. Battery Bimonthly(电池), 2002, 32(6): 14-17.
Shen J (沈健), Peng B (彭博), Tao Z L (陶占良), et al. Cathode materials and electrolytes for magnesium secondary batteries[J]. Progress in Chemistry (化学进展), 2010, 22(2/3): 515-521.
Blomgren G E. Electrochemistry: Making a potential difference[J]. Nature, 2000, 407: 681-682.
Besenhard J O, Winter M. Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries[J]. ChemPhysChem, 2002, 3(2): 155-159.
Zhao Q S (赵青松), NuLi Y N (努丽燕娜), Guo Y S (郭永胜), et al. Electrolytes for rechargeable magnesium batteries[J]. Progress in Chemistry (化学进展), 2011, 23(8): 1598-1610.
Zheng Y P (郑育培), NuLi Y N (努丽燕娜), Yang J (杨军), et al. Research progress of cathode materials for rechargeable magnesium batteries[J]. Chemical Industry and Engineering Progress (化工进展), 2011, 30(5): 1024-1032.
Genders J D, Pletcher D. Studies using microelectrodes of the Mg(Ⅱ)/Mg couple in tetrahydrofuran and propylene carbonate[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 199(1): 93-100.
Liebenow C J. Reversibility of electrochemical magnesium deposition from Grignard solutions[J]. Journal of Applied Electrochemistry, 1997, 27(2): 221-225.
Lu Z, Schechter A, Moshkovich M, et al. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions[J]. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217.
Aurbach D, Moshkovich M, Schechter A, et al. Magnesium deposition and dissolution process in ethereal grinard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy[J]. Electrochemical and Solid-State Letters, 2000, 3(1): 31-34.
Gregory T D, Hoffman R J, Winterton R C. Nonaqueous electrochemistry of magnesium: Applications to energy storage[J]. Journal of The Electrochemical Society, 1990, 137(3): 775-780.
Liebenow C, Yang Z, Lobitz P. The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates[J]. Electrochemistry Communications, 2000, 2(9): 641-645.
Muldoon J, Bucur C B, Oliver A G, et al. Electrolyte roadblocks to a magnesium rechargeable battery[J]. Energy & Environmental Science, 2012, 5: 5941-5950.
Aurbach D, Schechter A, Moshkovich M, et al. On the mechanisms of reversible magnesium deposition processes[J]. Journal of The Electrochemical Society, 2001, 148(9): A1004-A1014.
Aurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes[J]. Journal of The Electrochemical Society, 2002, 149(2): A115-A121.
Gizbar H, Vestfrid Y, Chusid O, et al. Alkyl group transmetalation reactions in electrolytic solutions studies by multinuclear NMR[J]. Organometallics, 2004, 23(16): 3826-3831.
Vestfried Y, Chusid O, Gofer Y, et al. Structural analysis of electrolyte solutions comprising magnesium-aluminate chloro-organic complexes by Raman spectroscopy[J]. Organometallics, 2007, 26(13): 3130-3137.
Viestfried Y, Levi M D, Gofer Y, et al. Microelectrode studies of reversible Mg deposition in THF solutions containing complexes of alkylaluminum chlorides and dialkylmagnesium[J]. Journal of Electroanalytical Chemistry, 2005, 576(2): 183-195.
Liang Y L, Feng R J, Yang S Q, et al. Rechargeable Mg batteries with graphene-like MoS2 cathode and ultrasmall Mg nanoparticle anode[J]. Advanced Materials, 2011, 23(5): 640-643.
Aurbach D, Suresh G S, Levi E, et al. Progress in rechargeable magnesium battery technology[J]. Advanced Materials, 2007, 19(23): 4260-4267.
Mizrahi O, Amir N, Pollak E, et al. Electrolyte solutions with a wide electrochemical windows for rechargeable magnesium batteries[J]. Journal of The Electrochemical Society, 2008, 155(2): A103-A109.
Pour N, Gofer Y, Major D T, et al. Structural analysis of electrolyte solutions for rechargeable Mg batteries by stereoscopic means and DFT calculations[J]. Journal of the American Chemical Society, 2011, 133(16): 6270-6278.
Jiao L F (焦丽芳), Yuan H T (袁华堂), Li X D (李晓冬), et al. Research on Mg(SnPh3)2 electrolyte solution of rechargeable magnesium battery[J]. Chemistry (化学通报), 2005, 68(9): 714-717.
Kim H S, Arthur T S, Allred G D, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode[J]. Nature Communications, 2011, 2: 427.
Guo Y S, Yang J, NuLi Y N, et al. Study of electronic effect of Grignard reagent on their electrochemical behavior[J]. Electrochemistry Communications, 2010, 12(12): 1671-1673.
Guo Y S, Zhang F, Yang J, et al. Electrochemical performance of novel electrolyte solutions based on organoboron magnesium salts[J]. Electrochemistry Communications, 2012, 18: 24-27.
Zhao Q S, NuLi Y N, Guo Y S, et al. Reversibility of electrochemical magnesium deposition from tetrahydrofuran solutions containing pyrrolidinyl magnesium halide[J]. Electrochimica Acta, 2011, 56(18): 6530-6535.
Aurbach D, Turgeman R, Chusid O, et al. Spectroelectrochemical studies of magnesium deposition by in situ FTIR spectroscopy[J]. Electrochemistry Communications, 2001, 3(5): 252-261.



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.