•  
  •  
 

Corresponding Author

Yan-cai LI(liyancai2000@yahoo.com.cn)

Abstract

The CuO nanoplatelets were synthesized by hydrothermal method. The structure and morphology of the CuO nanoplatelets were characterized by TEM and XRD. A new nonenzymatic glucose sensor was constructed by immobilizing the CuO nanoplatelets on glassy carbon electrode with Nafion. The electrochemical performance of the CuO/Nafion/GCE for the detection of glucose was investigated by cyclic voltammetry and current-time curve. The experiment results showed that the linear dependence of the sensor was 0.01 to 0.3 mmol·L-1 for glucose with a sensitivity of 1783.58 μA·mmol-1·L·cm-2, and the detection limit of the sensor was 0.80 μmol·L-1 (S/N = 3). Also, the sensor displayed fast response and long-term stability to glucose, and interferences of ascorbic acid, dopamine, and uric acid were effectively avoided.

Graphical Abstract

Keywords

CuO platelets, nanomaterials, nonenzymatic sensor, glucose

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2014-02-25

Online Available Date

2014-02-24

Revised Date

2013-01-22

Received Date

2012-10-25

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.