Abstract
Employing of aniline dimer (N-phenyl-p-phenylenediamine, NPD) as the starting monomer, polyaniline was electrochemically synthesized on the surface of glassy carbon electrode in acetonitrile-aqueous mixing solutions(20% by volume)containing 1 mol·L-1 HClO4. Experimental results demonstrated that the polymerization of NPD occurs at the potentials about 0.2 V lower than those of aniline monomer. Furthermore, the resulting polyaniline has higher morphology controllability than those synthesized by using aniline as the stating monomer. The uniform polyaniline nanoparticles (30 nm in diameter), ultralong nanowires (length > 5 μm, 50 nm in diameter) or large area nanosheets (4 μm in length, 2 μm in height, 30 nm in thickness) can be prepared by using step-wise galvanostatic method when the concentrations of NPD monomer was 1, 5 or 10 mmol·L-1, respectively.
Graphical Abstract
Keywords
π-conjugated type of organic conducting polymer, polyaniline, monomer, electrochemical polymerization, uniform morphology
Publication Date
2014-02-25
Online Available Date
2014-02-24
Revised Date
2012-12-10
Received Date
2012-11-10
Recommended Citation
Yang ZUO, Kang SHI.
Preliminary Study on Morphology Controllability of Electrochemically Prepared Polyaniline by Using Aniline Aimer[J]. Journal of Electrochemistry,
2014
,
20(1): 17-21.
DOI: 10.13208/j.electrochem.121112
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss1/4
References
[1] Huang J, Virji S, B Weiller H, et al. Polyaniline nanofibers: Facile synthesis and chemical sensors[J]. Journal of the American Chemical Society, 2003, 125(2): 314-315.
[2] Wang Y, Jing X. Intrinsically conducting polymers for electromagnetic interference shielding[J]. Polymers for Advanced Technologies, 2005, 16(4): 344-351.
[3] Rohwerder M, Michalik A. Conducting polymers for corrosion protection: What makes the difference between failure and success[J]. Electrochimica Acta, 2007, 53(3): 1300-1313.
[4] Deshpande M V, Amalnerkar D P. Biosensors prepared from electrochemically-synthesized conducting polymers[J]. Progress in Polymer Science, 1993, 18(4): 623-649.
[5] Stejskal J, Sapurina I, Miroslava Trchová M. Polyaniline nanostructures and the role of aniline oligomers in their formation[J]. Prog. Polym. Sci. 2010, 35(12): 1420-1481.
[6] Wang Z Y, Liu S, Wu P, Cai C X. Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes[J]. Analytical Chemistry, 2009, 81(4): 1638-1645.
[7] Zhang L J, Zujovic Z D, Peng H, et al. Structural characteristics of polyaniline nanotubes synthesized from different buffer solutions[J]. Macromolecules, 2008, 41(22):8877-84.
[8] Zhou C Q, Han J, Song G P, et al. Polyaniline hierarchical structures synthesized in aqueous solution: Micromats of nanofibres[J]. Macromolecules 2007, 40(20): 7075-7078.
[9] Zhang H B, Wang J X, Wang Z, et al. Electrodeposition of polyaniline nanostructures: A lamellar structure[J]. Synthetic Metals, 2009, 159(3/4): 277-81.
[10] Li Y, Wang B C, Feng W. Chiral polyaniline with flaky, spherical and urchin-like morphologies synthesized in the L-phenylalanine saturated solutions[J]. Synthetic Metals, 2009, 159(15/16): 1597-602.
[11] Zujovic Z D, Laslau C, Travas-Sejdic J. Lamellar-structured nanoflakes Comprised of stacked oligoaniline nanosheets[J]. Chemistry-An Asian Journal, 2011, 6(3): 791-796.
[12] Huczko A. Template-based synthesis of nanomaterials[J]. Applied Physics A-Materials Science & Processing, 2000, 70(4): 365-376.
[13] Gao M, Huang S, Dai L, et al. Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers[J]. Angewandte Chemie-International Edition, 2000, 39(20): 3664-3667.
[14] Wan M. A template-free method towards conducting polymer nanostructures[J]. Advanced Materials, 2008, 20(15): 2926-2932.
[15] Liang L, Liu J, Windisch C F, et al. Direct assembly of large arrays of oriented conducting polymer nanowires[J]. Angewandte Chemie-International Edition, 2002, 41(19): 3665-3668.
[16] Gao Y X (高艳新), Sun L C (孙丽超), Xie S Y (谢素原), et al. Electrochemical fabrication of the ordered polyaniline nanowires array[J]. Journal of Electrochemistry (电化学), 2012, 18(1): 51-55.
[17] Liu J, Lin Y, Liang L, et al. Templateless assembly of molecularly aligned conductive polymer nanowires: A new approach for oriented nanostructures[J]. Chemistry-A European Journal, 2003, 9(3): 605-611.
[18] Wu L L (吴玲玲), Luo J (罗谨), Lin Z H (林仲华). Spectroelectrochemical studies of the conducting polymer of o-phenylenediamine[J]. Chemical Research in Chinese Universities (高等学校化学学报), 1997, 18(10): 1657-1663.
[19] Wu L L, Luo J, Lin Z H. Spectroelectrochemical studies of poly-o-phenylenedianmine. Part 1. In situ resonance raman spectroscopy[J]. Journal of Electroanalytical Chemistry, 1996, 417(1): 53-68.
[20] Randriamahazaka H, Sini G, Tran Van F. Electrodeposition mechanisms and electrochemical behavior of Poly(3,4-ethylenedithiathiophene)[J]. Journal of Physical Chemistry C, 2007, 111(12): 4553-4560.
[21] Si S H, Xu Y J, Nie L H, et al. Electrochemical quartz crystal microbalance study on electropolymerization of m-phenylenediamine: Effects of aniline and polyaniline[J]. Electrochimica Acta, 1995, 40(17): 2715-2721.
[22] Li X, Huang M, Duan W. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations[J]. Chemical Reviews, 2002, 102(9): 2925-3030.
[23] Heinze J, Frontana-Uribe B A, Ludwigs S. Electrochemistry of conducting polymers-persistent models and new concepts[J]. Chemical Reviews, 2010, 110(8): 4724-4771.
[24] Heinze J, Rasche A, Pagels M, et al. On the origin of the so-called nucleation loop during electropolymerization of conducting polymers[J]. Journal of Physical Chemistry B, 2007, 111(5): 989-997.
[25] Atkinson I M, Lindoy L F, Editors. Self-assembly in supramolecular systems[M]. Royal Society of Chemistry, Cambridge, 2000.
Included in
Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons