•  
  •  
 

Corresponding Author

Bo HUANG(huangbo2k@hotmail.com)

Abstract

A LNF-GDC composite cathode with a gradual change in the composition between ScSZ electrolyte and LNF cathode was fabricated to reduce the cathode polarization resistance (Rp). The gradual change in composition between ScSZ electrolyte and LNF cathode shows the decreases in the charge transfer resistance (Rct) and gas phase diffusion resistance (Rd). The results revealed that the Rp value, measuring 0.452 Ω·cm2 at 750 °C, was the lowest for LNF-GDC composite cathodes with three layers and gradient changes in composition between ScSZ and LNF (Cathode C),, whereas the Rp value of 70%LNF-30%GDC composite cathodes with one layer (Cathode A) was 0.581 Ω·cm2. The reduction in Rp for the LNF-GDC composite cathodes with three layers and gradient changes in composition between ScSZ and LNF may be related to the fact that the microstructure of the cathode/electrolyte interfaces is significantly improved, resulting in the increase in the area of triple phase boundaries (TPBs), which enhanced the surface exchange of oxygen. This implied that the gradient LNF-GDC composite cathodes showed excellent performance in terms of its electrochemical properties.

Graphical Abstract

Keywords

solid oxide fuel cell, LaNi0.6Fe0.4O3-δ cathode, gradient cathode, polarization resistance, electrochemical impedance spectroscopy

Publication Date

2014-02-25

Online Available Date

2014-02-24

Revised Date

2013-02-21

Received Date

2012-12-06

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.