•  
  •  
 

Corresponding Author

Zhi-you ZHOU(zhouzy@xmu.edu.cn)

Abstract

White TiO2 nanorods were synthesized by hydrothermal method with TiCl4 as a precursor. As-synthesized TiO2 nanorods were further subjected to high-temperature (550 oC) heat treatment for 2 h under H2 atmosphere to prepare gray black hydrogen-treated TiO2 (H-TiO2) nanorods with oxygen vacancies and Ti3+ interstitial atoms. The Pt nanoparticles of 1.9 nm were supported on these two types of TiO2 nanorods to form Pt/TiO2 and Pt/H-TiO2 catalysts. XRD data indicates that the crystal structure of TiO2 was still reserved as rutile after hydrogen treatment, but the surface was covered by some Ti-OH species, as evidenced by XPS test. Electrochemical tests demonstrate that the oxygen vacancies of H-TiO2 can enhance the adsorption/desorption of oxygen on Pt nanoparticles, which promotes the electrocatalytic activity of H-TiO2 towards methanol oxidation. As a result, the peak current density of methanol oxidation on Pt/H-TiO2 was 1.6 and 2.1 times those of methanol oxidation on Pt/TiO2 and Pt/C, respectively.

Graphical Abstract

Keywords

platinum nanoparticles, TiO2 nanorods, hydrogen treatment, methanol electrooxidation, oxygen vacancy, Ti3+ interstitial atom

Publication Date

2014-04-28

Online Available Date

2014-04-17

Revised Date

2013-05-16

Received Date

2013-04-17

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.