•  
  •  
 

Corresponding Author

Sheng-li CHEN(slchen@whu.edu.cn)

Abstract

DFT calculation is used to study various possible steps in the oxygen reduction reaction (ORR), including the adsorption and dissociation process of O2 and the serial protonation process of dissociated products to form H2O on the Pt(111) surface. By using slabs of different sizes, and different numbers of pre-adsorbed oxygen atoms, the coverage effects on the pathways are investigated. The calculated results using different hydrated proton models are also compared. It is shown that the initial step of the ORR is the formation of a protonated end-on chemisorbed state of OOH*, which can transform to an unprotonated top-bridge-top state of O2* or dissociate into adsorbed O* species with similar activation barrier. The calculated activation barriers for various possible steps at different oxygen coverages suggest that the protonation of O* to form OH* species is the rate-determining step in the ORR. With the increased oxygen coverage, the activation energy of this step decreases. It is found that the use of hydrated proton models more complicated than H7O3+ does not change the calculated pathways.

Graphical Abstract

Keywords

minimum energy path, ORR mechanism, oxygen coverage, hydrated proton model

Publication Date

2014-06-28

Online Available Date

2014-05-09

Revised Date

2014-05-02

Received Date

2014-03-19

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.