Abstract
A series of model molecules with 4 kinds of conformational transformations have been investigated as optical molecular switches by using density functional theory combined with nonequilibrium Green’s function method. The theoretical calculations show that molecules after conformational transformations have photoswitching characteristics. We find that the photochromic molecules with the same conformational transformation usually have a similar current on/off state when they are applied as photoshwitches. Among these transformations, the molecular switch with E(“trans”)/Z(“cis”)-isomerisation of the NN double bond has the highest current on-off ratio. The influences of the energy gap (HLG) between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), spatial distributions, transmission and projected density of states (PDOS) spectra on the electronic transport through the optical molecular switches are discussed in detail.
Graphical Abstract
Keywords
conformational transformation, photochrome, electronic transport, current on-off ratio, molecular orbitals
Publication Date
2014-06-28
Online Available Date
2013-11-10
Revised Date
2013-11-05
Received Date
2013-08-08
Recommended Citation
Yuan-yuan HE, Jian-wei ZHAO.
Effects of Conformational Transformations on Electronic Transport Properties of Optical Molecular Switches: An ab initio Study[J]. Journal of Electrochemistry,
2014
,
20(3): 243-259.
DOI: 10.13208/j.electrochem.130881
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss3/6
References
[1] Feringa B L. In control of motion: From molecular switches to molecular motors[J]. Accounts of Chemical Research, 2001, 34(6): 504-513.
[2] Irie M. Diarylethenes for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1685-1716.
[3] Tian H, Yang S J. Recent progresses on diarylethene based photochromic switches[J]. Chemical Society Reviews, 2004, 33(2): 85-97.
[4] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555.
[5] Dugave C, Demange L. Cis-trans isomerization of organic molecules and biomolecules: Implications and applications[J]. Chemical Reviews, 2003, 103(7): 2475-2532.
[6] Delaire J A, Nakatani K. Linear and nonlinear optical properties of photochromic molecules and materials[J]. Chemical Reviews, 2000, 100(5): 1817-1845.
[7] Renth F, Siewertsen R, Temp F. Enhanced photoswitching and ultrafast dynamics in structurally modified photochromic fulgides[J]. International Reviews in Physical Chemistry, 2013, 32(1): 1-38.
[8] Collier C P, Mattersteig G, Wong E W, et al. A [2]catenane-based solid state electronically reconfigurable switch[J]. Science, 2000, 289(18): 1172-1175.
[9] Zheng C H, Pu S Z, Pang Z Y, et al. Syntheses and photochromism of new isomeric diarylethenes bearing an indole moiety[J]. Dyes and Pigments, 2013, 98(3): 565-574.
[10] Heshmat B, Pahlevaninezhad H, Darcie T E. Optical efficiency enhancement methods for terahertz receiving photoconductive switches[J]. Optics & Laser Technology, 2013, 54: 297-302.
[11] Coelho P J, Castro M C R, Raposo M M M. Reversible trans-cis photoisomerization of new pyrrolidene heterocyclic imines[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 259: 59-65.
[12] Dulic D, van der Molen S J, Kudernac T, et al. One-way optoelectronic switching of photochromic molecules on gold[J]. Physical Review Letters, 2003, 91(20): 207402-1-4.
[13] Schenderlein H, Voss A, Stark R W, et al. Preparation and characterization of light-switchable polymer networks attached to solid substrates[J]. Langmuir, 2013, 29(14): 4525-4534.
[14] Zhao L Y, Hou Q F, Sui D, et al. Multistate/multifunctional switches based on photochromic Schiff base[J]. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 2007, 67(3/4): 1120-1125.
[15] Plaquet A, Guillaume M, Champagne B, et al. In silico optimization of merocyanine-spiropyran compounds as second-order nonlinear optical molecular switches[J]. Physical Chemistry Chemical Physics, 2008, 10(41): 6223-6232.
[16] Jankowska J, Rode M F, Sadlej J, et al. Photophysics of schiff bases: Theoretical study of salicylidene methylamine[J]. ChemPhysChem, 2012, 13(18): 4287-4294.
[17] Grzegorzek J, Filarowski A, Mielke Z. The photoinduced isomerization and its implication in the photo-dynamical processes in two simple Schiff bases isolated in solid argon[J]. Physical Chemistry Chemical Physics, 2011, 13(37): 16596-16605.
[18] Maurer R J, Reuter K. Assessing computationally efficient isomerization dynamics: Delta SCF density-functional theory study of azobenzene molecular switching[J]. The Journal of Chemical Physics, 2011, 135(22): 224303-1-10.
[19] Satzger H, Root C, Braun M. Excited-state dynamics of trans- and cis-azobenzene after UV excitation in the ππ* band[J]. The Journal of Physical Chemistry A, 2004, 108(30): 6265-6271.
[20] Perrier A, Maurel F, Jacquemin D. Single molecule multiphotochromism with diarylethenes[J]. Accounts of Chemical Research, 2012, 45(8): 1173-1182.
[21] Taguchi M, Nakagawa T, Nakashima T, et al. Photochromic and fluorescence switching properties of oxidized triangle terarylenes in solution and in amorphous solid states[J]. Journal of Materials Chemistry, 2011, 21(43): 17425-17432.
[22] Miskolczy S, Biczok L. Photochromism of a merocyanine dye bound to sulfonatocalixarenes: effect of pH and the size of macrocycle on the kinetics[J]. The Journal of Physical Chemistry B, 2013, 117(2): 648-653.
[23] Villeneuve C H, Michalik F, Chazalviel J N, et al. Quantitative IR readout of fulgimide monolayer switching on Si(111) surfaces[J]. Advanced Materials, 2013, 25(3): 416-421.
[24] Jin L M, Li Y N, Ma J, et al. Synthesis of novel thermally reversible photochromic axially chiral spirooxazines[J]. Organic Letters, 2010, 12(15): 3552-3555.
[25] Berkovic G, Krongauz V, Weiss V. Spiropyrans and spirooxazines for memories and switches[J]. Chemical Reviews, 2000, 100(5): 1741-1753.
[26] Hadjoudis E, Rontoyianni A, Ambroziak K, et al. Photochromism and thermochromism of solid trans-N,N′-bis-(salicylidene)-1,2-cyclohexanediamines and trans-N,N′-bis-(2-hydroxy-naphylidene)-1,2-cyclohexane-diamine[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162(2/3): 521-530.
[27] Shinkai S. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 281.
[28] Irie M. Molecular switches (Ed.: Feringa B L)//[M], Wiley-VCH, 2001: 37.
[29] Seminario J M, Politzer P. Molecular density functional theory a tool for chemistry[M]. Elesvier, Amsterdam, 1995.
[30] Frisch M J, Trucks G W, Schlege H B, et al. GAUSSIAN 03, Wallingford CT, 2004.
[31] Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789.
[32] Salzner U, Lagowski J B, Pickup P G, et al. Design of low band gap polymers employing density functional theory-hybrid functionals ameliorate band gap problem[J]. Journal of Computational Chemistry, 1997, 18(15): 1943-1953.
[33] Hay P J, Wadt W R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg[J]. The Journal of Chemical Physics, 1985, 82(1): 270-284.
[34] Wadt W R, Hay P J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi[J]. Journal of Chemical Physics, 1985, 82(1): 284-298.
[35] Dunning T H, Hay P J. In Schaefer H F. Modern theoretical chemistry(III Ed.)[M]. New York: Plenum Press, 1976: 1-28.
[36] Gronbeck H, Curioni A, Andreoni W. Thiols and disulfides on the Au(111) surface: The headgroup-gold interaction[J]. Journal of the American Chemical Society, 2000, 122(16): 3839-3842.
[37] Yin X, Liu H M, Zhao J W. Electronic transportation through asymmetrically substituted oligo(phenylene ethynylene)s: Studied by first principles nonequilibrium Green’s function formalism[J]. Journal of Chemical Physics, 2006, 125(9): 094711-1-6.
[38] Liu H M, Li P, Zhao J W, et al. Theoretical investigation on molecular rectification on the basis of asymmetric substitution and proton transfer reaction[J]. Journal of Chemical Physics, 2008, 129(22): 224704-1-6.
[39] Stokbro K, Taylor J, Brandbyge M. Do Aviram-Ratner diodes rectify?[J]. Journal of the American Chemical Society, 2003, 125(13): 3674-3675.
[40] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Physica B-Condensed Matter, 2011, 406(4): 895-898.
[41] Fan Z Q, Zhang Z H, Ming Q, et al. First-principles study of repeated current switching in a bimolecular device[J]. Computational Materials Science, 2012, 53(1): 294-297.
[42] Atomistix ToolKit, QuantumWise A/S, www.quantumwise.com (access 2006).
[43] Yaliraki S N, Roitberg A E, Gonzalez C, et al. The injecting energy at molecule/metal interfaces: Implications for conductance of molecular junctions from an ab initio molecular description[J]. The Journal of Chemical Physics, 1999, 111(15): 6997-7002.
[44] Hall L E, Reimers J R, Hush N S, et al. Formalism, analytical model, and a priori Green’s-function-based calculations of the current-voltage characteristics of molecular wires[J]. The Journal of Chemical Physics, 2000, 112(3): 1510-1521.
[45] Tomfohr J, Sankey O F. Theoretical analysis of electron transport through organic molecules[J]. The Journal of Chemical Physics, 2004, 120(3): 1542-1554.
[46] Zhao P, Liu D S, Wang P J, et al. First-principles study of the electronic transport properties of the anthraquinone-based molecular switch[J]. Journal of Physics: Condensed Matter, 2011, 406(4): 895-898.
[47] Zhao W K, Yang C L, Wang M S, et al. Effects of electrode orientation on the transport properties of pyridine-terminated dithienylethene light molecule switch under bias[J]. Solid State Communications, 2013, 153(1): 1-7.
[48] Datta S. Electronic transport in mesoscopic systems[M]. Cambrideg University Press, New York, 1995.
[49] Castro P J, Gomez I, Cossi M, et al. Computational study of the mechanism of the photochemical and thermal ring-opening/closure reactions and solvent dependence in spirooxazines[J]. The Journal of Physical Chemistry A, 2012, 116(31): 8148-8158.
[50] Buttiker M. Four-terminal phase-coherent conductance[J]. Physical Review Letters, 1986, 57(14): 1761-1764.
[51] Meir Y, Wingreen N S. Landauer formula for the current through an interacting electron region[J]. Physical Review Letters, 1992, 68(16): 2512-2515.
[52] Yin X, Li Y W, Zhang Y, et al. Theoretical analysis of geometry-correlated conductivity of molecular wire[J]. Chemical Physics Letters, 2006, 422(1/3): 111-116.
[53] Seminario J M, Zacarias A G, Tour J M. Theoretical study of a molecular resonant tunneling diode[J]. Journal of the American Chemical Society, 2000, 122(13): 3015-3020.
[54] Hanif M, Lu P, Li M, et al. Synthesis, characterization, electrochemistry and optical properties of a novel phenanthrenequinonealt-dialkylfluorene conjugated copolymer[J]. Polymer International, 2007, 56(12): 1507-1513.
[55] Knyazhansky M I, Metelitsa A V, Kletskii M E, et al. The structural transformations and photo-induced processes in salicylidene alkylimines[J]. Journal of Molecular Structure, 2000, 526: 65-79.
[56] Zhou Y H, Yuan L Z, Zheng X H. Ab initio study of the transport properties of a light-driven switching molecule azobenzene substituent[J]. Computational Materials Science, 2012, 61: 145-149.
[57] B?ckmann M, Doltsinis N L, Marx D. Enhanced photoswitching of bridged azobenzene studied by nonadiabatic ab initio simulation[J]. Journal of Chemical Physics, 2012, 137(22): 22A505-1-10.
[58] Siewertsen R, Sch?nborn J B, Hartke B, et al. Superior Z-E and E-Z photoswitching dynamics of dihydrodibenzodiazocine, a bridged azobenzene, by S1(nπ*) excitation at k = 387 and 490 nm[J]. Physical Chemistry Chemical Physics, 2011, 13(3): 1054-1063.
[59] Xia C J, Liu D S, Liu H C. Phenylazoimidazole as a possible optical molecular switch: An ab initio study[J]. Optik, 2012, 123(14): 1307-1310.
[60] Wolak M A, Thomas C J, Gillespie N B, et al. Tuning the optical properties of fluorinated indolylfulgimides[J]. Journal of Organic Chemistry, 2003, 68(2): 319-326.
[61] Zhao P, Wang P J, Zhang Z, et al. Electronic transport properties of a diarylethene-based molecular switch with single-walled carbon nanotube electrodes: The effect of chirality[J]. Solid State Communications, 2009, 149(23/24): 928-931.
Included in
Nanoscience and Nanotechnology Commons, Physical Chemistry Commons, Semiconductor and Optical Materials Commons