•  
  •  
 

Corresponding Author

Yong-Jun LI(liyongjunef@gmail.com)

Abstract

Two-dimensional flower-like Pt nanostructures (2D FPNs) were fabricated on glassy carbon substrates by galvanostatical electrochemical technique. The electrolyte was the HAuCl4 + HClO4 aqueous solution without addition of any structure-directing organic reagent, which made as-prepared Pt nanostructures cleaner, exhibiting much higher reactivity. Scanning electron microscopic images revealed that 2D FPNs were spherical Pt nano-flowers constructed by the smallest building blocks, nano-leaves. The number density of spherical Pt nano-flowers can be tuned by controlling the electrodeposition time. High resolution transmission electron microscopic images indicated that each nano-leaf was formed by growing along Pt(111) direction. Electrocatalytic activities of as-prepared 2D FPNs were closely linked with the electrodeposition time. The electrocatalytic activity of 2D FPNs under the optimized electrodeposition time was slightly higher than that of the commercial Pt/C catalyst with much better tolerance to CO-like poisoning molecules. It may be attributed to the exposure of specified facets and the cleanness of surface.

Graphical Abstract

Keywords

platinum, methanol, nanostructure, electrodeposition, electrocatalytic, oxidation

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Date

2014-08-28

Online Available Date

2014-03-22

Revised Date

2014-03-16

Received Date

2013-12-30

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.