Abstract
This article reviews the recent progress in understanding of the mechanisms for formic acid oxidation on Pt electrode. There are two pathways for formic acid oxidation on Pt electrode: (1) Indirect Pathway through which HCOOH is oxidized to CO2 through COad intermediate. This pathway contributes only 1% of the total current; (2) Direct Pathway where HCOOH is oxidized directly to CO2. The results from IR Spectroscopy, single-crystal electrochemistry and DFT calculation all support that the bridge-bonded formate is neither the intermediate of direct pathway nor the precursor for COad formation in indirect pathway. Possible mechanism in the direct pathway for formic acid oxidation is discussed.
Graphical Abstract
Keywords
formic acid oxidation, platinum electrode, dual-pathway mechanism, indirect pathway, direct pathway, formate pathway
Publication Date
2014-08-28
Online Available Date
2014-01-30
Revised Date
2014-01-22
Received Date
2013-11-13
Recommended Citation
Jie XU, Dao-chuan JIANG, Dong MEI, Zheng-da HE, Yan-xia CHEN.
Recent Progress in the Mechanistic Understanding of Formic Acid Oxidation on Pt Electrode[J]. Journal of Electrochemistry,
2014
,
20(4): 333-342.
DOI: 10.13208/j.electrochem.130891
Available at:
https://jelectrochem.xmu.edu.cn/journal/vol20/iss4/6
References
[1] Capon A, Parsons R. Oxidation of formic-acid at noble-metal electrodes. 1. Review of previews work[J]. Journal of Electroanalytical Chemistry, 1973, 44(1): 1-7.
[2] Feliu J M, Herrero E. Fuel cell electrocatalysis//[M] Vielstich W, Lamm A, Gasteiger H A. (Eds.), Handbook of fuel cells: Fundamentals, technology, applications, chichester. John Wiley and Sons Ltd., 2003: 625.
[3] Zhang Z B, Xu J, Kang J, et al. Role of bridge-bonded formate in formic acid dehydration to CO at Pt electrode: Electrochemial in-situ infrared spectroscopic study[J]. Chinese Journal of Chemical Physics, 2013, 26(4): 471-476.
[4] Breiter M W. A study of intermediates adsobed on platinized-platinum during steady-state oxidation of methanol formic acid and formaldehyde[J]. Journal of Electroanalytical Chemistry, 1967, 14(4): 407-413.
[5] Parsons R, VanderNoot T. The oxidation of small organic molecules. A survey of recent fuel cell related research[J]. Journal of Electroanalytical Chemistry, 1988, 257(1/2): 9-45.
[6] Bockris J O M, Conway B E, White R E(Eds.). Modern aspects of electrochemistry[M]. New York: Kluwer Adcademic/Plenum Publishers, 1992: 97-263.
[7] Jarvi T D, Stuve E M. Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces//[C]. Lipkowski J, Ross P N (Eds.), Electrocatalysis, New York: Wiley-VCH, 1998: 75.
[8] Sun S G. Studying electrocatalytic oxidation of small organic molecules with in-situ infrared spectroscopy//[C]. Lipkowski J, Ross P N (Eds.), Electrocatalysis, New York: Wiley-VCH, 1998: 243-291.
[9] Hamnett A. Accomplishments and challenges[M]. New York: Marcel Dekker Inc., 1999: 843-883
[10] Herrero E, Feliu J. Electrocatalysis: interfacial kinetics and mass transport//[C]. Bard A J, Stratmann M (Eds.), Encyclopedia of Electrochemistry, Weinheim. Germany: Wiley-VCH, 2003: 443-465.
[11] Waszczuk P, Crown A, Mitrovski S, et al. Electrocatalysis//[C]. Vielstich W, Lamm A, Gasteiger H A. (Eds.), Handbook of fuel cells: Fundamentals, technology, applications, Chichester, UK, John Wiley & Sons, 2003: 635-651.
[12] Neurock M, Janik M, Wieckowski A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt[J]. Faraday Discussions, 2009, 140: 363-378.
[13] Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.
[14] Batista B C, Varela H. Open circuit interaction of formic acid with oxidized Pt surfaces: Experiments, modeling, and simulations[J]. Journal of Physical Chemistry C, 2010, 114(43): 18494-18500.
[15] Gao W, Keith J A, Anton J, et al. Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt(111)[J]. Journal of the American Chemical Society, 2010, 132(51): 18377-18385.
[16] Hartnig C, Grimminger J, Spohr E. Adsorption of formic acid on Pt(111) in the presence of water[J]. Journal of Electroanalytical Chemistry, 2007, 607(1/2): 133-139.
[17] Cuesta A, Cabello G, Gutierrez C, et al. Adsorbed formate: The key intermediate in the oxidation of formic acid on platinum electrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(45): 20091-20095.
[18] Grozovski V, Vidal-Iglesias F J, Herrero E, et al. Adsorption of formate and its role asintermediate in formic acid oxidation on platinum electrodes[J]. Chemphyschem, 2011, 12(9): 1641-1644.
[19] Chen Y X, Heinen M, Jusys Z, et al. Bridge-bonded formate: Active intermediate or spectator species in formic acid oxidation on a Pt film electrode?[J]. Langmuir, 2006, 22(25): 10399-10408.
[20] Chen Y X, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid—spectroelectrochemical studies in a flow cell[J]. Angewandte Chemie-International Edition, 2006, 45(6): 981-985.
[21] Chen Y X, Heinen M, Jusys Z, et al. Kinetic isotope effects in complex reaction networks: Formic acid electro-oxidation[J]. Chemphyschem, 2007, 8(3): 380-385.
[22] Samjeske G, Miki A, Ye S, et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: A time-resolved surface-enhanced infrared study[J]. Journal of Physical Chemistry B, 2005, 109(49):23509-23516.
[23] Samjeske G, Osawa M. Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time-resolved IR spectroscopy[J]. Angewandte Chemie International Edition, 2005, 44(35): 5694-5698.
[24] Samjeske G, Miki A, Ye S, et al. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy[J]. Journal of Physical Chemistry B, 2006, 110(33): 16559-16566.
[25] Mukouyama Y, Kikuchi M, Samjeske G, et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum: A mathematical modeling and simulation[J]. Journal of Physical Chemistry B, 2006, 110(24): 11912-11917.
[26] Osawa M, Komatsu K-i, Samjeske G, et al. The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum[J]. Angewandte Chemie International Edition, 2011, 50(5): 1159-1163.
[27] Chen Y X, Ye S, Heinen M, et al. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: Formic acid oxidation on a Pt film electrode at elevated temperatures[J]. Journal of Physical Chemistry B, 2006, 110(19): 9534-9544.
[28] Corrigan D S, Krauskopf E K, Rice L M, et al. Adsorption of acetic-acid at platinum and gold electrodes - a combined infrared spectroscopic and radiotracer study[J]. Journal of Physical Chemistry, 1988, 92(6): 1596-1601.
[29] Kunimatsu K, Kita H. Infrared spectroscopic study of methanol and formic acid adsorbates on a platinum electrode Part II. Role of the linear CO (a) derived from methanol and formic acid in the electrocatalytic oxidation of CH3OH and HCOOH[J]. Journal of Electroanalytical Chemistry, 1987, 218(1/2): 155-172.
[30] Sun S G, Lin Y, Li N H, et al. Kinetics of dissociative adsorption of formic-acid on Pt(100), Pt(610), Pt(210) and Pt(110) single-crystal electrodes in perchloric-acid solutions[J]. Journal of Electroanalytical Chemistry, 1994, 370(1/2): 273-280.
[31] Iwasita T, Xia X H, Herrero E, et al. Early stages during the oxidation of HCOOH on single-crystal Pt electrodes as characterized by infrared spectroscopy[J]. Langmuir, 1996, 12(17): 4260-4265.
[32] Koper M T M, Lai S C S, Herrero E. Mechanisms of the oxidation of carbon monoxide and small organic molecules at metal electrodes//[C] Koper M T M (Ed.) Fuel cell catalysis: A surface science approach, Hoboken, New Jersey: John Wiley & Sons, inc., 2009: 159-208.
[33] Clavilier J, Parsons R, Durand R, et al. Formic-acid oxidation single-crystal platinum-electrodes - comparison with polycrystalline platinum[J]. Journal of Electroanalytical Chemistry, 1981, 124(1/2): 321-326.
[34] Lamy C, Leger J M, Clavilier J, et al. Structural effects in electrocatalysis-a comparitive study of the oxixation of CO, HCOOH and CH3OH on single crystal Pt electrodes[J]. Journal of Electroanalytical Chemistry, 1983, 150(1/2): 71-77.
[35] Adzic R R, O'Grady W E, Srinivasan S. Oxidation of HCOOH on (100), (110) and (111) single crystal platinum electrodes[J]. Surface Science, 1980, 94(2/3): L191-L194.
[36] Macia M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified stepped electrodes[J]. Journal of Electroanalytical Chemistry, 2001, 500(1/2): 498-509.
[37] Macia M D, Herrero E, Feliu J M, et al. Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes[J]. Electrochemistry Communications, 1999, 1(2): 87-89.
[38] Smith S P E, Ben-Dor K F, Abruna H D. Poison formation upon the dissociative adsorption of formic acid on bismuth-modified stepped platinum electrodes[J]. Langmuir, 2000, 16(2): 787-794.
[39] Grozovski V, Climent V, Herrero E, et al. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces[J]. Physical Chemistry Chemical Physics, 2010, 12(31): 8822-8831.
[40] Grozovski V, Climent V, Herrero E, et al. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps[J]. Chemphyschem, 2009, 10(11): 1922-1926.
[41] Xu J, Mei D, Yuan D F, et al. A revisit to the role of bridge-adsorbed formate in the electrocatalytic oxidation of formic acid at Pt electrodes[J]. Chinese Journal of Chemical Physics, 2013, 26(3): 321-328.
[42] Willsau J, Heitbaum J. Analysis of adsorbed intermediates and determination of surface potential shifts by DEMS[J]. Electrochimica Acta, 1986, 31(8): 943-948.
[43] Wilhelm S, Iwasita T, Vielstich W. COH and CO as adsorbed intermediates during methanol oxidation on platinum[J]. Journal of Electroanalytical Chemistry, 1987, 238(1/2): 383-391.
[44] Sun S G, Clavilier J, Bewick A. The mechanism of electrocatalytic oxidation of formic-acid on Pt(100) and Pt(111) in sulfuric-acid solution - an EMIRS study[J]. Journal of Electroanalytical Chemistry, 1988, 240(1/2): 147-159.
[45] Chen Y X, Miki A, Ye S, et al. Formate, an active intermediate for direct oxidation of methanol on Pt electrode[J]. Journal of the American Chemical Society, 2003, 125(13): 3680-3681.
[46] Falconer J L, Madix R J. Kinetics and mechanism of autocatalytic decomposition of HCOOH on clean Ni(110)[J]. Surface Science, 1974, 46(2): 473-504.
[47] Sharpe R G, Bowker M. Kinetic models of surface explosions[J]. Journal of Physics-Condensed Matter, 1995, 7(32): 6379-6392.
[48] Xu J, Yuan D F, Yang F, et al. On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode[J]. Physical Chemistry Chemical Physics, 2013, 15(12): 4367-4376.
[49] Joo J, Uchida T, Cuesta A, et al. Importance of acid–base equilibrium in electrocatalytic oxidation of formic acid on platinum[J]. Journal of the American Chemical Society, 2013, 135(27): 9991-9994.
[50] Bockris J O M, Reddy A K N, Gamboa-Aldeco M. Modern electrochemistry[M]. Kluwer Academic: Plenum Publishers, 2001: 450.
[51] Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. Journal of Physical Chemistry C, 2009, 113(40): 17502-17508.
[52] Miki A, Ye S, Osawa M. Surface-enhanced IR absorption on platinum nanoparticles: An application to real-time monitoring of electrocatalytic reactions[J]. Chemical Communications, 2002, (14): 1500-1501.
Included in
Catalysis and Reaction Engineering Commons, Engineering Science and Materials Commons, Materials Chemistry Commons, Materials Science and Engineering Commons, Physical Chemistry Commons, Power and Energy Commons